Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.
2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.

The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Evaluations of Cleanliness

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder
Operating frequency: 1 Hz
Average speed: $500 \mathrm{~mm} / \mathrm{s}$ [20in. $/ \mathrm{sec}$.]
Applied pressure: 0.5 MPa [73psi.]
Suction condition: Microejector ME05, Primary side: 0.5 MPa [73psi.] applied, Tube: $\phi 6$ [0.236in.]
Mounting direction: Vertical
Chamber volume: 8.3ℓ [0.293 $\mathrm{ft}{ }^{3}$]

2. Particle counter

Manufacturer/model: RION/KM20
Suction flow rate: $28.3 \mathrm{l} / \mathrm{min}$ [1 ft . $/ \mathrm{min}$.]
Particle diameter: $0.1 \mu \mathrm{~m}, 0.2 \mu \mathrm{~m}, 0.3 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 0.7 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}$

3. Measurement method

3-1 Confirmation of number of particles in the measurement system
Under the conditions in the above 1 and 2 , using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.
3-2 Measurement under operation
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.
3-3 Reconfirmation
Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

- Cleanroom specification

Jig Cylinder (no suction from dust collection port)
Particle generation over 1 million operations (CS-CDA16×30)

- Cleanroom specification

Slim Cylinder (with suction from dust collection port)
Particle generation over 1 million operations (CS-DA20×100)

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

- For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p. 31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

Symbols

- Double acting type

Single acting push type

Specifications

Item Bore mm [in.]		6 [0.236]	10 [0.394]	16 [0.630]
Operating type		Double acting type, Single acting push type		
Media		Air		
Mounting type		Basic type, Foot type, Flange type, Clevis type (clevis type of $\phi 10$ and $\phi 16$ only)		
Operating pressure range MPa [psi.]	Double acting type	$\begin{aligned} & 0.15 \sim 0.7 \\ & {[22 \sim 102]} \end{aligned}$	$0.1 \sim 0.7[15 \sim 102]$	
	Single acting push type	$\begin{gathered} 0.3 \sim 0.7 \\ {[44 \sim 102]} \end{gathered}$	$0.15 \sim 0.7$ [22~102]	
Proof pressure MPa [psi.]		1.03 [149]		
Operating temperature range ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$		$0 \sim 60$ [32~140]		
Operating speed range mm / s [in./sec.]		50~300 [2.0~11.8]		
Cushion		None	Rubber bumper	
Lubrication		Not required		
Port size		M5 $\times 0.8{ }^{\text {Note }}$		

Note: M3 $\times 0.5$ can also be selected at $\phi 6$ only.

Bore Size and Stroke

Double acting type					mm [in.]
Bore size	Standard strokes ${ }^{\text {Note }}$			Maximum available stroke	Stroke tolerance
$\begin{array}{c\|c} \hline 6 & 5 \\ {[0.236]} & 5, \end{array}$	$5,10,15,20,25,30,35,40,45,50,55,60$			100	$\left.\begin{array}{c} +1.5 \\ 0 \\ {[+0.059} \\ 0 \end{array}\right]$
10 5, $[0.394]$ 75	$\begin{aligned} & 5,10,15,20,25,30,35,40,45,50,55,60 \\ & 75,100,125,150 \\ & \hline \end{aligned}$			150	
$\begin{array}{c\|l} \hline 16 & 5, \\ {[0.630]} & 75 \\ \hline \end{array}$	$\begin{aligned} & 5,10,15,20,25,30,35,40,45,50,55,60 \\ & 75,100,125,150,175,200 \end{aligned}$			200	
Single acting type					mm [in.]
Operating type	Bore size	Standard strokes ${ }^{\text {Note }}$	Maximum available stroke		Stroke tolerance
Single acting push type	6 [0.236]	$\begin{aligned} & 5,10,15,20,25,30 \\ & 35,40,45,50,55,60 \end{aligned}$	75		$\begin{gathered} +1.5 \\ 0 \\ {\left[\begin{array}{c} +0.059 \\ 0 \end{array}\right]} \end{gathered}$
	10 [0.394]		105		
	16 [0.630]		120		

Note: The non-standard strokes:
For strokes divisible by 5 , cylinder tube cutting is used.
For strokes not divisible by 5, a collar is packed to the next size up stroke of cylinder tube.

Order Codes

Order Codes for Mounting Brackets Only

Name \quadBore size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]
Single foot bracket	CS-1A-PBDA6	CS-1A-PBDA10	CS-1A-PBDA16
Double foot bracket	CS-1-PBDA6	CS-1-PBDA10	CS-1-PBDA16
Flange bracket	CS-3-PBDA6	CS-3-PBDA10	CS-3-PBDA16
Clevis supporting bracket	-	CS-7C-PBDA10	CS-7C-PBDA16

Mounting type

Name		
Mounting type	Remarks	
$\mathbf{1}$	Double foot type	Included at shipping
$\mathbf{1 A}$	Single foot type Note	Included at shipping
$\mathbf{3}$	Flange type	Included at shipping
$\mathbf{7}$	Clevis type (with pin)	Assembled and shipped
$\mathbf{7 - 7 C}$	Clevis type with supporting bracket (with pin)	Supporting bracket included at shipping

Note:When the stroke exceeds 60 mm [2.362in.], select the double foot type when using the foot bracket.

Mass

																										g [oz.]
흥	Mounting type	$\begin{aligned} & \text { Bore } \\ & \mathrm{mm} \end{aligned}$	Stroke mm																		Additional mass					Additional mass of Lateral piping
																					Mounting type			$\begin{array}{\|c\|} \hline \text { Cylinder } \\ \text { with } \\ \text { magnet } \end{array}$	Sensor switch$(1 \text { pc. })^{\text {Note } 2}$	
			5	10	15	20	25	30	35	40	45	50	55	60	75	100	125	150	175	200	Single foot	Flange	Clevis Noil			
	Basic type	6	$\left\lvert\, \begin{array}{c\|c} 18.8 \\ {[0.663]} \end{array}\right.$	$\begin{gathered} 19.4 \\ {[0.684]} \end{gathered}$	$\begin{gathered} 20 \\ {[0.705]} \end{gathered}$	$\begin{array}{\|c\|} \hline 20.8 \\ {[0.734]} \\ \hline \end{array}$	$\begin{gathered} \hline 21.4 \\ {[0.755]} \end{gathered}$	$\begin{gathered} 22 \\ {[0.766]} \end{gathered}$	$\begin{gathered} \hline 22.4 \\ {[0.790]} \end{gathered}$	$\left.\begin{array}{c\|} \hline 22.8 \\ {[0.804]} \end{array} \right\rvert\,$	$\begin{gathered} 23 \\ {[0.811]} \end{gathered}$	$\begin{array}{c\|} \hline 23.6 \\ {[0.832]} \end{array}$	$\begin{array}{\|c\|} \hline 24.2 \\ {[0.854]} \end{array}$	$\begin{array}{c\|} \hline 25 \\ {[0.882]} \end{array}$	-	-	-	-	-	-	$\left\|\begin{array}{c} 7 \\ {[0.25]} \end{array}\right\|$	$\begin{gathered} 5 \\ {[0.18]} \end{gathered}$		$\begin{gathered} 0.5 \\ {[0.018]} \end{gathered}$	$\begin{aligned} & \text { A : } 20[0.71] \\ & \mathrm{B}: 50[1.76] \end{aligned}$	-
		10	$\begin{array}{\|c} 27 \\ {[0.952]} \end{array}$	$\begin{gathered} 28 \\ {[0.988]} \end{gathered}$	$\left.\begin{array}{c} 29 \\ {[1.023]} \end{array}\right]$	$\left[\begin{array}{c} 30 \\ {[1.058]} \end{array}\right.$	$\left[\begin{array}{c} 31 \\ {[1.093]} \end{array}\right.$	$\begin{gathered} 32 \\ {[1.129]} \end{gathered}$	$\begin{array}{\|c\|} \hline 33.3 \\ {[1.175]} \end{array}$	$\begin{gathered} 34.6 \\ {[1.220]} \end{gathered}$	$\begin{gathered} 36 \\ {[1.270]} \end{gathered}$	$\left\|\begin{array}{c} 37 \\ {[1.305]} \end{array}\right\|$	$\left[\begin{array}{c} 38 \\ {[1.340]} \end{array}\right]$	$\left[\begin{array}{c} 39 \\ {[1.376]} \end{array}\right.$	$\left\lvert\, \begin{gathered} 42.4 \\ {[1.496]} \end{gathered}\right.$	$\left[\begin{array}{c} 48.1 \\ {[1.697]} \end{array}\right]$	$\left.\left\lvert\, \begin{array}{c} 53.8 \\ {[1.898]} \end{array}\right.\right]$	$\begin{array}{\|c\|} \hline 59.5 \\ {[2.099]} \end{array}$	-	-	$\left\|\begin{array}{c} 7 \\ {[0.25]} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 5 \\ {[0.18]} \end{array}$	-	$\begin{gathered} 1 \\ {[0.04]} \end{gathered}$		$\begin{gathered} 2 \\ {[0.07]} \end{gathered}$
		16	$\begin{gathered} \hline 47.8 \\ {[1.686]} \end{gathered}$	$\begin{gathered} 49.4 \\ {[1.743]} \end{gathered}$	$\left[\begin{array}{c} 51 \\ {[1.799]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 52.6 \\ {[1.855]} \end{array}$	$\left[\begin{array}{c} 54.2 \\ {[1.912]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 56 \\ {[1.975]} \end{array}$	$\begin{array}{\|c\|} \hline 57.6 \\ {[2.032]} \end{array}$	$\left.\begin{array}{c\|} \hline 59.2 \\ {[2.088]} \end{array} \right\rvert\,$	$\begin{gathered} 61 \\ {[2.152]} \end{gathered}$	$\begin{gathered} 62.3 \\ {[2.198]} \end{gathered}$	$\left[\left.\begin{array}{c} 63.6 \\ {[2.243]} \end{array} \right\rvert\,\right.$	$\left\lvert\, \begin{array}{c\|} \hline 66 \\ {[2.328]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 71.3 \\ {[2.515]} \end{array}$	$\left.\begin{array}{c\|} 80.1 \\ {[2.825]} \end{array}\right]$	$\begin{array}{c\|} \hline 88.9 \\ {[3.136]} \end{array}$	$\begin{array}{c\|} \hline 97.7 \\ {[3.446]} \end{array}$	$\left.\begin{array}{l} 106.5 \\ {[3.757]} \end{array}\right]$	$\left\|\begin{array}{c} 115.3 \\ {[4.067]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} 18 \\ {[0.63]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 12 \\ {[0.42]} \end{array}$	-	$\begin{gathered} 2 \\ {[0.07]} \end{gathered}$		$\begin{gathered} 3 \\ {[0.11]} \end{gathered}$
	Clevis mounting type (with pin)	10	$\begin{gathered} 30.8 \\ {[1.086]} \end{gathered}$	$\begin{gathered} 31.9 \\ {[1.125]} \end{gathered}$	$\begin{array}{\|c\|} \hline 33 \\ {[1.164]} \end{array}$	$\begin{array}{\|c\|} \hline 33.8 \\ {[1.192]} \end{array}$	$\begin{array}{\|c\|} \hline 34.9 \\ {[1.231]} \end{array}$	$\begin{gathered} \hline 36 \\ {[1.270]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 37.8 \\ {[1.333]} \end{array}$	$\begin{array}{\|c\|} \hline 38.9 \\ {[1.372]} \end{array}$	$\begin{gathered} 40 \\ {[1.411]} \end{gathered}$	$\begin{gathered} \hline 40.8 \\ {[1.439]} \end{gathered}$	$\left[\begin{array}{c} \hline 4.9 \\ {[1.478]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 43 \\ {[1.517]} \end{array}$	$\begin{gathered} 46.3 \\ {[1.633]} \\ \hline \end{gathered}$	$\begin{gathered} 51.8 \\ {[1.827]} \end{gathered}$	$\begin{array}{\|c\|} \hline 57.3 \\ {[2.021]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62.8 \\ {[2.215]} \\ \hline \end{array}$	-	-	-	-	$\begin{gathered} 32 \\ {[1.13]} \end{gathered}$	$\begin{gathered} 1 \\ {[0.04]} \end{gathered}$		-
		16	$\begin{array}{\|c\|} \hline 59.4 \\ {[2.095]} \\ \hline \end{array}$	$\begin{gathered} 61.2 \\ {[2.159]} \end{gathered}$	$\begin{gathered} 63 \\ {[2.222]} \end{gathered}$	$\begin{array}{\|c\|} \hline 64.4 \\ {[2.272]} \\ \hline \end{array}$	$\left.\begin{gathered} 66.2 \\ {[2.335]} \end{gathered} \right\rvert\,$	$\begin{gathered} 68 \\ {[2.399]} \end{gathered}$	$\begin{array}{\|c\|} \hline 69.4 \\ \hline[2.48] \end{array}$	$\left.\begin{array}{c\|} \hline 7.2 \\ {[2.511]} \end{array} \right\rvert\,$	$\begin{gathered} 73 \\ {[2.575]} \end{gathered}$	$\left.\begin{gathered} 74.4 \\ {[2.624]} \end{gathered} \right\rvert\,$	$\begin{gathered} \hline 76.2 \\ {[2.688]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 78 \\ {[2.751]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 83.4 \\ {[2.942]} \\ \hline \end{array}$	$\begin{gathered} 92.4 \\ {[3.259]} \end{gathered}$	$\begin{array}{\|c\|} \hline 101.4 \\ {[3.577]} \\ \hline \end{array}$	$\left.\begin{array}{\|c\|c\|} \hline 110.4 \\ {[3.894]} \end{array} \right\rvert\,$	$\left.\left\lvert\, \begin{array}{c\|} 119.4 \\ {[4.212]} \end{array}\right.\right]$	$\left.\begin{gathered} 128.4 \\ {[4.529]} \end{gathered} \right\rvert\,$	-	-	$\begin{gathered} 45 \\ {[1.59]} \end{gathered}$	$\begin{gathered} 2 \\ {[0.07]} \end{gathered}$		-
	Basic type	6	$\left\lvert\, \begin{array}{c\|c} 15.8 \\ {[0.557]} \end{array}\right.$	$\left[\begin{array}{l} 16.4 \\ {[0.578]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 17 \\ {[0.600]} \end{array}$	$\left.\begin{gathered} 19.8 \\ {[0.698]} \end{gathered} \right\rvert\,$	$\left[\begin{array}{c} 20.4 \\ {[0.720]} \end{array}\right.$	$\begin{gathered} 21 \\ {[0.741]} \end{gathered}$	$\left[\begin{array}{c} 22.8 \\ {[0.804]} \end{array}\right.$	$\begin{gathered} 23.4 \\ {[0.825]} \end{gathered}$	$\begin{array}{\|c\|} \hline 24 \\ {[0.847]} \\ \hline \end{array}$	$\begin{gathered} \hline 24.8 \\ {[0.875]} \end{gathered}$	$\begin{gathered} 25.4 \\ {[0.896]} \end{gathered}$	$\begin{gathered} 26 \\ {[0.917]} \end{gathered}$	-	-	-	-	-	-	$\left\|\begin{array}{c} 7 \\ {[0.25]} \end{array}\right\|$	$\begin{array}{\|c\|} 5 \\ {[0.18]} \end{array}$	-	$\begin{gathered} 0.5 \\ {[0.018]} \end{gathered}$		-
		10	$\begin{array}{\|c\|} \hline 26.8 \\ {[0.945]} \end{array}$	$\begin{gathered} 27.9 \\ {[0.984]} \end{gathered}$	$\begin{gathered} 29 \\ {[1.023]} \end{gathered}$	$\begin{gathered} \hline 31.8 \\ {[1.122]} \end{gathered}$	$\begin{aligned} & 32.9 \\ & {[1.160]} \end{aligned}$	$\begin{array}{\|c\|} \hline 34 \\ {[1.199]} \\ \hline \end{array}$	$\begin{gathered} \hline 39.8 \\ {[1.404]} \end{gathered}$	$\begin{array}{\|c\|} \hline 40.9 \\ {[1.443]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 42 \\ {[1.481]} \\ \hline \end{array}$	$\begin{gathered} \hline 42.8 \\ {[1.510]} \end{gathered}$	$\begin{gathered} 43.9 \\ {[1.549]} \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ {[1.587]} \end{gathered}$	-	-	-	-	-	-	$\left\|\begin{array}{c} 18 \\ {[0.63]} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 12 \\ {[0.42]} \\ \hline \end{array}$	-	$\begin{gathered} 1 \\ {[0.04]} \end{gathered}$		$\begin{gathered} 2 \\ {[0.07]} \end{gathered}$
		16	$\begin{gathered} 50.4 \\ {[1.78]} \\ \hline \end{gathered}$	$\begin{gathered} 52.2 \\ {[1.841]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 54 \\ {[1.005]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 58.4 \\ {[2.060]} \\ \hline \end{array}$	$\begin{gathered} \hline 60.2 \\ {[2.123]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 62 \\ {[2.187]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 72.4 \\ {[2.54]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 74.2 \\ {[2.617]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 76 \\ {[2.681]} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 77.4 \\ {[2.730]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 79.2 \\ {[2.794] \mid} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 81 \\ {[2.857]} \\ \hline \end{array}$	-	-	-	-	-	-	$\begin{gathered} 18 \\ {[0.63]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ {[0.42]} \\ \hline \end{array}$	-	$\begin{gathered} 2 \\ {[0.07]} \\ \hline \end{gathered}$		$\begin{gathered} 3 \\ {[0.11]} \end{gathered}$
	Clevis mounting type (with pin)	10	$\begin{gathered} \hline 29.8 \\ {[1.051]} \end{gathered}$	$\begin{gathered} 30.9 \\ {[1.090]} \end{gathered}$	$\begin{gathered} \hline 32 \\ {[1.129]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 34.8 \\ {[1.288]} \\ \hline \end{gathered}$	$\begin{gathered} 35.9 \\ {[1.266]} \end{gathered}$	$\begin{gathered} 37 \\ {[1.305]} \\ {[8} \end{gathered}$	$\begin{array}{\|c\|} \hline 42.8 \\ {[1.510]} \end{array}$	$\begin{array}{\|c\|} \hline 43.9 \\ {[1.549]} \\ \hline \end{array}$	$\begin{gathered} 45 \\ {[1.587]} \end{gathered}$	$\begin{array}{\|c\|} \hline 45.8 \\ {[1.616]} \end{array}$	$\begin{gathered} \hline 46.9 \\ {[1.654]} \end{gathered}$	$\begin{array}{\|c\|} \hline 48 \\ {[1.693]} \end{array}$	-	-	-	-	-	-	-	-	$\begin{gathered} 32 \\ {[1.13]} \end{gathered}$	$\begin{gathered} 1 \\ {[0.04]} \end{gathered}$		-
		16	$\begin{gathered} \hline 61.4 \\ {[2.166]} \end{gathered}$	$\begin{gathered} 63.2 \\ {\left[\begin{array}{c} 6.220] \end{array}\right]} \end{gathered}$	$\begin{gathered} 65 \\ \hline[2.293] \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 69.4 \\ {[2.48]} \end{array}$	$\begin{gathered} \hline 71.2 \\ {[2.511]} \end{gathered}$	$\begin{array}{\|c} \hline 73 \\ {[2.575]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 83.4 \\ {[2.942]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 83.4 \\ {[2.942]} \end{array} \right\rvert\,$	$\begin{gathered} 87 \\ {[3.069]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 88.4 \\ {[3.118]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 90.2 \\ {[3.182]} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 92 \\ {[3.245]} \end{array}$	-	-	-	-	-	-	-	-	$\begin{gathered} 45 \\ {[1.59]} \end{gathered}$	$\begin{gathered} 2 \\ {[0.07]} \end{gathered}$		-

Remark: Includes mounting nut and rod end nut. The clevis mounting type does not include mounting nut.
For the mass of the double foot bracket, add double the mass of the single foot bracket listed above.
Notes: 1. With supporting bracket and pin.
2. Same for all sensor switch models (ZC253 $\square, \mathbf{Z C 2 3 0} \square, \mathbf{Z C 2 0 1} \square, \mathbf{Z C 2 0 5} \square$).

Calculation example: The mass for 2 units of ZC253A, with a double acting cylinder with magnet with single foot bracket,
bore size of 10 mm , and stroke of 45 mm , is $36+7+1+40=84 \mathrm{~g}$ [2.96oz.].

- Double acting type

Major Parts and Materials

No.	Parts	Materials
(1)	Rod cover	Aluminum alloy (nickel plated)
(2)	Head cover	
(3)	Cylinder tube	Stainless steel
(4)	Piston rod	
(5)	Piston	Aluminum alloy
(6)	Magnet Note	Plastic magnet
(7)	Piston seal	Synthetic rubber (NBR)
(8)	Rod seal	
(9)	Bumper	Urethane rubber
(10)	Mounting nut	Mild steel (nickel plated)
(11)	Rod end nut	

Note: For cylinders with magnets. Standard cylinders do not have a built-in magnet for the sensor switch.

No.	Parts	Materials
(1)	Rod cover	Aluminum alloy (nickel plated)
(2)	Head cover	
(3)	Cylinder tube	Stainless steel
(4)	Piston rod	
(5)	Piston	Aluminum alloy
(6)	Magnet Note1	Plastic magnet
(7)	Piston seal	Synthetic rubber (NBR)
(8)	Bumper	Urethane rubber
(9)	Rod end nut	Mild steel (nickel plated)
(10)	Mounting nut	
(11)	Spring	Steel
(12)	Collar	Aluminum alloy
(13)	Rod seal	Synthetic rubber (NBR)
Note: For cylinders with magnets. Standard cylinders do not have a built-i magnet for the sensor switch.		

Basic type CS - PBDA $\square \square$ Bore size $\times \square$ Stroke

- Lateral piping (-A) Note 2

CS - PBDA \square Bore size \times Stroke -A

OLateral piping with mounting thread (-M) Note 2
CS - PBDA \square Bore size \times Stroke $-M$

$\substack{\text { Bore } \\ \text { size }}$	A	C	B	B1	G	1	J	K	L	N_{1}	N_{2}	U	U_{1}	U_{2}	V	AY
6 [0.236]	87[3.425]	$59[2.323]$	$12[0.472]$	-	24.5[0.965]	$5.5[0.217]$	$2.4[0.094]$	M3 $\times 0.5$	M8×1	10[0.394]	10 [0.394]	14[0.551]	-	-	$3[0.118]$	12 [0.472]
10 [0.394]	81 [3.189]	$53[2.087]$	$12[0.472]$	$12[0.472]$	$23[0.906]$	$7[0.276]$	3.2 [0.126]	$\mathrm{M} 4 \times 0.7$	M10×1	$6.5[0.256]$	$12[0.472]$	$14[0.551]$	$11[0.433]$	14 [0.551]	$4[0.157]$	14[0.551]
16 [0.630]	81.5[3.209]	53.5[2.106]	17 [0.669]	17[0.669]	21.5[0.846]	$8[0.315]$	$4[0.157]$	M5 $\times 0.8$	M12×1	$5[0.197]$	$12[0.472]$	$19[0.748]$	17 [0.669]	$19[0.748]$	$5[0.197]$	17 [0.669]

Notes: 1 . For bore size $\phi 6$ only.
2. Not available for bore size $\phi 6$.

Clevis mounting type CS - PBDA \qquad Bore size \times Stroke -7

$\bigcirc \substack{\text { corae } \\ \text { size }}$ Code	A	B	G	G1	1	J	K	L	N1	N2
10 [0.394]	$\begin{gathered} 97 \\ {[3.819]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\begin{gathered} 23 \\ {[0.905]} \end{gathered}$	$\begin{array}{\|c\|} \hline 22 \\ {[0.866]} \\ \hline \end{array}$	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{array}{\|c\|} \hline 3.2 \\ {[0.126]} \end{array}$	M4×0.7	M10×1	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$
16 [0.630]	$\begin{array}{\|c\|} \hline 102.5 \\ {[4.035]} \end{array}$	$\begin{array}{\|c\|} \hline 17 \\ {[0.669]} \end{array}$	$\begin{array}{\|c\|} \hline 21.5 \\ {[0.846]} \end{array}$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$	$\begin{array}{\|c\|} 8 \\ {[0.315]} \end{array}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	M5 $\times 0.8$	M12×1	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \\ \hline \end{gathered}$

$\underbrace{}_{\substack{\text { sirae } \\ \text { size }}}$ Code	P	Q	R	S	U	V	CA	CB
10 [0.394]	$3.2{ }_{+0.06}^{+0.09}\left[0.1260_{+0.0024}^{+0.0035}\right]$	$3.2{ }_{+0.1}^{+0.2}\left[0.126_{+0.004}^{+0.08}\right]$	$\begin{gathered} 13 \\ {[0.512]} \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 92 \\ \hline[3.622] \end{gathered}$	$\begin{gathered} 69 \\ {[2.717]} \end{gathered}$
16 [0.630]	$5 \xrightarrow{\substack{+0.096}}\left[0.1969_{+0.0024}^{+0.0035}\right]$	$6.5_{+0.1}^{+0.2}\left[0.256_{+0.004}^{+0.08}\right]$	$\begin{gathered} 18 \\ {[0.709]} \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}$	$\begin{array}{\|c\|} \hline 19 \\ {[0.748]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5 \\ {[0.197]} \end{array}$	$\begin{array}{\|c\|} \hline 94.5 \\ {[3.720]} \end{array}$	$\begin{gathered} 69.5 \\ {[2.736]} \end{gathered}$

- Basic type CS - PBSA $\square \square$ Bore size $\times \square$ Stroke

Lateral piping (-A) Note 2
CS - PBSA \square Bore size \times Stroke -A

Notes: 1. For bore size $\phi 6$ only.

$$
\text { 2. Not available for bore size } \phi 6 \text {. }
$$

Code	A												C											
$\begin{aligned} & \hline \begin{array}{c} \text { Bore } \\ \text { size } \end{array} \end{aligned} \text { Stroke }$	5	10	15	20	25	30	35	40	45	50	55	60	5	10	15	20	25	30	35	40	45	50	55	60
6 [0.236]	$\begin{array}{\|c\|} \hline 87 \\ {[3.425]} \end{array}$	$\left.\left\lvert\, \begin{array}{c} 92 \\ {[3.622]} \end{array}\right.\right]$	$\left[\begin{array}{c} 97 \\ {[3.819]} \end{array}\right]$	$\begin{array}{c\|} \hline 107 \\ {[4.213]} \end{array}$	$\left\|\begin{array}{c} 112 \\ {[4.409]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} 117 \\ {[4.606]} \end{gathered}\right.$	$\left\|\begin{array}{c} 137 \\ {[5.394]} \end{array}\right\|$	$\left\|\begin{array}{c} 142 \\ {[5.591]} \end{array}\right\|$	$\left[\begin{array}{c} 147 \\ {[5.787]} \end{array}\right.$	$\left.\left\lvert\, \begin{array}{c} 152 \\ {[5.984]} \end{array}\right.\right]$	$\begin{gathered} \hline 157 \\ {[6.181]} \end{gathered}$	$]\left[\begin{array}{c} 162 \\ {[6.378]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 59 \\ {[2.323]} \end{array}$	${ }_{3}^{64}\left[\begin{array}{c} 64 \\ {[2.520]} \end{array}\right.$		$\left\|\begin{array}{c} 79 \\ {[3.110]} \end{array}\right\|$	$]\left[\begin{array}{c} 84 \\ {[3.307]} \end{array}\right]$	$\left[\begin{array}{c} 89 \\ {[3.504]} \end{array}\right]$	$\begin{gathered} 109 \\ {[4.291]} \end{gathered}$	$]\left[\begin{array}{c} 114 \\ {[4.488]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 119 \\ {[4.685]} \end{array}$	$\left[\begin{array}{c} 124 \\ {[4.882]} \end{array}\right]$	$\begin{gathered} 129 \\ {[5.079]} \end{gathered}$	$\begin{gathered} 134 \\ \hline[5.276] \end{gathered}$
10 [0.394]	$\left\|\begin{array}{c} 86 \\ {[3.386]} \end{array}\right\|$	$\begin{gathered} 91 \\ {[3.583]} \end{gathered}$	$\left[\begin{array}{c} 96 \\ {[3.780]} \end{array}\right]$	$\left[\begin{array}{c} 106 \\ {[4.173]} \end{array}\right]$	[$\begin{gathered}111 \\ {[4.370]}\end{gathered}$	$\left\lvert\, \begin{gathered} 116 \\ {[4.567]} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 131 \\ {[5.157]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 136 \\ {[5.354]} \end{array}$	$\left[\begin{array}{c} 141 \\ {[5.551]} \end{array}\right.$	$\begin{gathered} 146 \\ {[5.748]} \end{gathered}$	$\left\lvert\, \begin{gathered} 151 \\ {[5.945]} \end{gathered}\right.$	$\begin{gathered} 156 \\ {[6.142]} \end{gathered}$	$\begin{array}{\|c\|} \hline 58 \\ {[2.283]} \end{array}$	$\begin{gathered} 63 \\ {[2.480]} \end{gathered}$	$\left.\begin{array}{c} 68 \\ {[2.677]} \end{array}\right]$	$\left\|\begin{array}{c} 78 \\ {[3.071]} \end{array}\right\|$	$\begin{gathered} 83 \\ {[3.268]} \end{gathered}$	$\begin{gathered} 88 \\ {[3.465]} \end{gathered}$	$\left[\begin{array}{c} 103 \\ {[4.055]} \end{array}\right.$	$\begin{gathered} 108 \\ {[4.252]} \end{gathered}$	$\begin{gathered} 113 \\ {[4.449]} \end{gathered}$	$\left[\begin{array}{c} 118 \\ {[4.646]} \end{array}\right]$	$\begin{gathered} 123 \\ {[4.843]} \end{gathered}$	$\begin{gathered} 128 \\ {[5.039]} \end{gathered}$
16 [0.630]	$\begin{gathered} 86.5 \\ {[3.406]} \end{gathered}$	$\begin{array}{\|c\|} \hline 91.5 \\ {[3.602]} \end{array}$	$\begin{gathered} 96.5 \\ \hline 3.799] \end{gathered}$	$\begin{gathered} 106.5 \\ {[4.193]} \end{gathered}$	$\begin{aligned} & 111.5 \\ & {[4.390]} \end{aligned}$	$\left\lvert\, \begin{gathered} 116.5 \\ {[4.587]} \end{gathered}\right.$	$\left\|\begin{array}{l} 131.5 \\ {[5.177]} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 136.5 \\ {[5.374]} \end{array}$	$\begin{aligned} & 141.5 \\ & \hline 5.571] \\ & \hline \end{aligned}$	$\begin{gathered} 146.5 \\ {[5.768]} \end{gathered}$	$\left[\begin{array}{l} 151.5 \\ {[5.965]} \end{array}\right]$	$\begin{gathered} 156.5 \\ \hline 6.161] \end{gathered}$	$\begin{array}{\|c\|} \hline 58.5 \\ {[2.303]} \end{array}$	$\begin{gathered} \hline 63.5 \\ {[2.500]} \end{gathered}$	$\left.c_{68.5}^{[2.697]}\right]$	$\begin{array}{\|c\|} \hline 78.5 \\ {[3.091]} \end{array}$	$\begin{gathered} \hline 83.5 \\ {[3.287]} \end{gathered}$	$\left.\begin{array}{c} 88.5 \\ {[3.484]} \end{array}\right]$	$\left[\begin{array}{c} 103.5 \\ {[4.075]} \end{array}\right]$	$\left[\begin{array}{c} 108.5 \\ {[4.272]} \end{array}\right.$	$\begin{gathered} 113.5 \\ {[4.469]} \end{gathered}$	$\begin{gathered} 118.5 \\ {[4.665]} \end{gathered}$	$\begin{gathered} 123.5 \\ {[4.862]} \end{gathered}$	$\begin{gathered} 128.5 \\ \hline 5.059] \end{gathered}$

$\underset{\substack{\text { Bore } \\ \text { size }}}{ } \quad$ Code	B	B1	G	I	J	K	L	N	U	U_{1}	U_{2}	V	AY
6 [0.236]	12 [0.472]	-	14.5 [0.571]	5.5 [0.217]	2.4 [0.094]	M3 $\times 0.5$	M8×1	8 [0.315]	14 [0.551]	-	-	3 [0.118]	12 [0.472]
10 [0.394]	12 [0.472]	12 [0.472]	13 [0.512]	7 [0.276]	3.2 [0.126]	$\mathrm{M} 4 \times 0.7$	M10×1	8.5 [0.335]	14 [0.551]	11 [0.433]	14 [0.551]	$4[0.157]$	14 [0.551]
16 [0.630]	17 [0.669]	17 [0.669]	11.5 [0.453]	8 [0.315]	4 [0.157]	M5×0.8	M12×1	7 [0.276]	19 [0.748]	17 [0.669]	19 [0.748]	$5[0.197]$	17 [0.669]

- Code	A											
$\underset{\substack{\text { Bore } \\ \text { size }}}{ } \quad$ Stroke	5	10	15	20	25	30	35	40	45	50	55	60
10 [0.394]	97 [3.819]	102 [4.016]	107 [4.213]	117 [4.606]	122 [4.803]	127 [5.000]	142 [5.591]	147 [5.787]	152 [5.984]	157 [6.181]	162 [6.378]	167 [6.575]
16 [0.630]	102.5 [4.035]	107.5 [4.232]	112.5 [4.429]	122.5 [4.823]	127.5 [5.020]	132.5 [5.217]	147.5 [5.807]	152.5 [6.004]	157.5 [6.201]	162.5 [6.398]	167.5 [6.594]	172.5 [6.791]

- Code	CA											
$\underset{\substack{\text { Bore } \\ \text { size }}}{ } \quad$ Stroke	5	10	15	20	25	30	35	40	45	50	55	60
10 [0.394]	92 [3.622]	97 [3.819]	102 [4.016]	112 [4.409]	117 [4.606]	122 [4.803]	137 [5.394]	142 [5.591]	147 [5.787]	152 [5.984]	157 [6.181]	162 [6.378]
16 [0.630]	94.5 [3.720]	99.5 [3.917]	104.5 [4.114]	114.5 [4.508]	119.5 [4.705]	124.5 [4.902]	139.5 [5.492]	144.5 [5.689]	149.5 [5.886]	154.5 [6.083]	159.5 [6.280]	164.5 [6.47

Code	CB											
$\underset{\substack{\text { Bore } \\ \text { size }}}{ } \quad$ Stroke	5	10	15	20	25	30	35	40	45	50	55	60
10 [0.394]	69 [2.717]	74 [2.913]	79 [3.110]	89 [3.504]	94 [3.701]	99 [3.898]	114 [4.488]	119 [4.685]	124 [4.882]	129 [5.079]	134 [5.276]	139 [5.472]
16 [0.630]	71.5 [2.815]	76.5 [3.012]	81.5 [3.209]	91.5 [3.602]	96.5 [3.799]	101.5 [3.996]	116.5 [4.587]	121.5 [4.783]	126.5 [4.980]	131.5 [5.177]	136.5 [5.374]	141.5 [5.571]

$\underset{\substack{\text { Brae } \\ \text { size }}}{ }$	B	G	G1	1	J	K	L	N	P	Q	R	S	U	V
10 [0.394]	$\begin{gathered} 12 \\ {[0.472]} \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ {[0.512]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 22 \\ {[0.866]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \\ \hline \end{array}$	$\begin{gathered} 3.2 \\ {[0.126]} \\ \hline \end{gathered}$	M4×0.7	M10×1	$\begin{array}{\|c\|} \hline 8.5 \\ {[0.335]} \\ \hline \end{array}$	$3.2{ }_{+0.06}^{+0.09}\left[0.1260_{+0.0024}^{+0.0035}\right]$	$3.2{ }_{+0.1}^{+0.2}\left[0.126_{+0.004}^{+0.008}\right]$	$\begin{array}{\|c\|} \hline 13 \\ {[0.512]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \\ \hline \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$
16 [0.630]	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\begin{gathered} \hline 11.5 \\ {[0.453]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 27 \\ {[1.063]} \\ \hline \end{array}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \end{array}$	M5×0.8	M12×1	$\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \\ \hline \end{array}$	$5{ }_{+0.06}^{+0.09}\left[0.1969{ }_{+0.0024}^{+0.0035}\right]$	$6.5{ }_{+0.1}^{+0.2}\left[0.256_{+0.004}^{+0.008}\right]$	$\begin{gathered} 18 \\ {[0.709]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 19 \\ {[0.748]} \end{array}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$

Symbol

Order Codes for Sensor Switches

Sensor switches (with mounting band)

Clean system product

- For details of sensor switches, see p.111~121.

ZC230 - Solid state type with indicator lamp DC10~28V
ZC253 —— Solid state type with indicator lamp DC4.5~28V
ZC201 _ Reed switch type without indicator lamp DC5~28V
ZC205 _— Reed switch type with indicator lamp DC10~28V

- Mounting band only

Depending on the sensor switch type and quantity, as well as on the mounting position, the minimum cylinder strokes that allow sensor switch mounting are shown below.

Two pieces mounting
When mounted in-line

When mounted in staggered positions

One piece mounting

			mm [in.]
Sensor switch model	2 pcs. mounting		1 pc. mounting
	In-line	In staggered positions	
ZC230 \square, ZC253 \square	30 [1.181]	5 [0.197]	5 [0.197]
ZC201 \square, ZC205 \square		10 [0.394]	

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ
The distance the piston travels in one direction, while the switch is in the ON position.
Response differential: C
The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Bore size	ZC230 \square, ZC253 \square		ZC201 \square, ZC205 \square	
	Operating range	Response differential	Operating range	Response differential
$\mathbf{6 [0 . 2 3 6]}$	$1.5 \sim 25[0.059 \sim 0.098]$	$0.3[0.012]$ or less	$4 \sim 6[0.157 \sim 0.236]$	$1.4[0.055]$ or less
$\mathbf{1 0 [0 . 3 9 4]}$	$2.0 \sim 3.0[0.079 \sim 0.118]$	$0.3[0.012]$ or less	$4 \sim 6[0.157 \sim 0.236]$	$1.5[0.059]$ or less
$\mathbf{1 6 [0 . 6 3 0]}$	$2.5 \sim 3.5[0.098 \sim 0.138]$	$0.3[0.012]$ or less	$5 \sim 7[0.197 \sim 0.276]$	$1.8[0.071]$ or less

Note: The operating range and response differential are to be used as reference values.

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the location shown in the diagram below (figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Double acting type				
mm [in.]				
$\left.\begin{array}{ll}\hline \text { Sensor } & \text { Bore size } \\ \text { switch model }\end{array}\right)$ Code		6 [0.236]	10 [0.394]	16 [0.630]
$\begin{aligned} & \mathrm{ZC} 230 \square \\ & \text { ZC253 } \square \end{aligned}$	A	3.5 [0.138]	2 [0.079]	3 [0.118]
	B	0 [0]	-3 [-0.118]	-2 [-0.079]
ZC201 \square	A	5 [0.197]	3.5 [0.138]	4.5 [0.177]
	B	1.5 [0.059]	-1.5 [-0.059]	-0.5 [-0.020]
ZC205 \square	A	1.5 [0.059]	0 [0]	1 [0.039]
	B	1 [0.039]	-2 [-0.079]	-1 [-0.039]

Single acting push type

mm [in.]					
Sensor switch mode		Stroke	6 [0.236]	10 [0.394]	16 [0.630]
$\begin{aligned} & \text { ZC230 } \\ & \text { ZC253 } \square \end{aligned}$	A	0~15	3.5 [0.138]	7 [0.276]	8 [0.315]
		16~30	8.5 [0.335]	12 [0.472]	13 [0.512]
		31~60	23.5 [0.925]	22 [0.866]	23 [0.906]
	B	-	0 [0]	-3 [-0.118]	$-2[-0.079]$
ZC201 \square	A	0~15	5 [0.197]	8.5 [0.335]	9.5 [0.374]
		16~30	10 [0.394]	13.5 [0.531]	14.5 [0.571]
		31~60	25 [0.984]	23.5 [0.925]	24.5 [0.965]
	B	-	1.5 [0.059]	-1.5 [-0.059]	-0.5 [-0.020]
ZC205 \square	A	0~15	1.5 [0.059]	5 [0.197]	6 [0.236]
		16~30	6.5 [0.256]	10 [0.394]	11 [0.433]
		31~60	21.5 [0.846]	20 [0.787]	21 [0.827]
	B	-	1 [0.039]	-2 [-0.079]	-1 [-0.039]

Mounting Sensor Switch by Strokes

5mm stroke

10 mm stroke

Position of sensor holder, and how to adjust it

-The sensor holder cannot be installed at the center of the sensor switch in the axial direction when mounting 2 sensor switches on a 5 mm [0.197in.] stroke cylinder.
When mounting 2 sensor switches on a 5 mm [0.197in.] stroke cylinder, loosen the mounting screw and move the sensor switch until the sensor holder is in the position shown in the diagram, and install it in the prescribed position.
OFor 10mm [0.394in.] strokes or longer, install the sensor holder so that it is approximately at the center of the sensor switch in the axial direction, as shown in the diagram.

Moving Sensor Switch

-Loosening the mounting screw allows the sensor switch to be moved either along the axial or circumference direction of the cylinder.
Ohen making fine adjustments of the sensor switch along the axial direction, a very slight loosening of the mounting screw (about onehalf turn) is enough to allow the sensor switch to move.
Tighten the mounting screw with a tightening torque of $0.3 \mathrm{~N} \cdot \mathrm{~m}$ [2.7in•lbf] or less.

Caution when installing sensor switches on the cylinder

In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

PEN CYLINDERS

Mounting Brackets, Rod End Accessories

Dimensions of Mounting Bracket mm [in.]

- Single foot bracket (For the order code, see p. 62.)

$\square \quad 1$

Bore Code size	\mathbf{U}	$\mathbf{A D}$	$\mathbf{A E}$	$\mathbf{A F}$	AG	$\mathbf{A H}$	AP	AT	$\mathbf{L Y}$
$6[0.236]$	8	5	32	22.2	7	9	4.2	1.6	16
$[0.315]$	$[0.197]$	$[1.260]$	$[0.874]$	$[0.276]$	$[0.354]$	$[0.165]$	$[0.063]$	$[0.630]$	
$\mathbf{1 0}[0.394]$	10	6	42	29.2	9	14	5.2	2.3	24
$[0.394]$	$[0.236]$	$[1.654]$	$[1.150]$	$[0.354]$	$[0.551]$	$[0.205]$	$[0.091]$	$[0.945]$	
$\mathbf{1 6}[0.630]$	12	6	42	29.2	9	14	5.2	2.3	24
$[0.472]$	$[0.236]$	$[1.654]$	$[1.150]$	$[0.354]$	$[0.551]$	$[0.205]$	$[0.091]$	$[0.945]$	

Clevis mount supporting bracket
Order code: 7C-PBDA Bore size

Bore size	CA	CB	CC	CD	CE	CF	CG	CK (Hexagon socket head bolt)
$10[0.394]$	$20[0.787]$	$11[0.433]$	$22[0.866]$	$5[0.197]$	$40[1.575]$	$30.2[1.189]$	$12[0.472]$	$\mathrm{M} 4 \times 0.7 \times 10[0.394]$
$16[0.630]$	$24[0.945]$	$14[0.551]$	$28[1.102]$	$6[0.236]$	$48[1.890]$	$35.2[1.386]$	$16[0.630]$	$\mathrm{M} 5 \times 0.8 \times 10[0.394]$

Bore Bize	CL (Spring washer)	CP	CQ	CR	CT	CU	CV	CW	CX	CY	CZ
$10[0.394]$	Nominal $4[0.157]$	$3.3[0.130]$	$3.1[0.122]$	$9[0.354]$	$2[0.079]$	$4.2[0.165]$	$18[0.709]$	$8[0.315]$	$21[0.827]$	$7[0.276]$	$36[1.417]$
$16[0.630]$	Nominal $5[0.197]$	$5.1[0.201]$	$6.4[0.252]$	$14[0.551]$	$2.3[0.091]$	$5.2[0.205]$	$20[0.787]$	$10[0.394]$	$25[0.984]$	$7[0.276]$	$42[1.654]$

BDAY
I type knuckle

$\begin{aligned} & \text { Bore } \\ & \text { size } \end{aligned}$	NA	NB	NC	NK	NP	NQ	Mass g (with pin)
10 [0.394]	21	8	10	M4×0.7	$\begin{array}{\|c\|} \hline 3.2 \\ {[0.126]} \end{array}$	$\left[\begin{array}{c} 3.2 \\ {[0.126]} \end{array}\right.$	$\begin{gathered} 21 \\ {[0.827]} \end{gathered}$
	[0.82]	[0.315]	[0.39				
16 [0.630]	$\left[\begin{array}{c} 21 \\ {[0.827]} \end{array}\right.$	$\left\|\begin{array}{c} 11 \\ {[0.433]} \end{array}\right\|$	$\left.\begin{array}{c} 10 \\ \hline 0.394] \end{array}\right]$	M5×0.8	$\left\|\begin{array}{c} 5 \\ {[0.197]} \end{array}\right\|$	$\left[\begin{array}{c} 6.5 \\ {[0.256]} \end{array}\right]$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$

[+8.004]							
	NA	NB	NC	NK	NP	NQ	Mass g
10 [0.394]	$\left\|\begin{array}{c} 21 \\ {[0.827]} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\left.\left\lvert\, \begin{array}{c} 9 \\ {[0.354]} \end{array}\right.\right]$	M4×0.7	$\left\|\begin{array}{c} 3.2 \\ {[0.126]} \end{array}\right\|$	$\left\|\begin{array}{c} 3.1 \\ {[0.122]} \end{array}\right\|$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$
16 [0.630]	$\left\|\begin{array}{c\|} \hline 25 \\ {[0.984]} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \end{array}$	M5×0.8	$\left\|\begin{array}{c} 5 \\ {[0.197]} \end{array}\right\|$	$\left\|\begin{array}{c} 6.4 \\ {[0.252]} \end{array}\right\|$	$\begin{gathered} 22 \\ {[0.866]} \end{gathered}$

	PA	PB	PC	PJ	PP	PQ	Mass g
10 [0.394]	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\left[\begin{array}{c} 5 \\ {[0.197]} \end{array}\right.$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{gathered} 13.5 \\ {[0.531]} \end{gathered}$	$\begin{gathered} 3.2 \\ {[0.126]} \end{gathered}$	$\begin{array}{\|c\|} \hline(15) \\ ([0.591]) \end{array}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$
16 [0.630]	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \\ {[0.197]} \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{gathered} 13.5 \\ {[0.531]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{array}{\|c\|} \hline(15) \\ ([0.591]) \end{array}$	$\left\{\begin{array}{c} 3 \\ {[0.118]} \end{array}\right.$
$16[0.630]$	$\left[\begin{array}{c} 19 \\ {[0.748]} \end{array}\right.$	$\left[\begin{array}{c} 6 \\ {[0.236]} \end{array}\right.$	$\begin{gathered} 19 \\ {[0.748]} \end{gathered}$	$\left[\begin{array}{c} 19 \\ {[0.748]} \end{array}\right.$		$\begin{gathered} \hline(20.5) \\ ([0.807]) \end{gathered}$	

Order Codes for Mounting Brackets and Rod End Accessories
(1) Single foot bracket

(2) Double foot bracket (2 foot brackets in 1 set)

(3) Flange bracket

(5) Y type knuckle ${ }^{\text {Note }}$

(6) I type knuckle ${ }^{\text {Note }}$

(7) Pin bracket ${ }^{\text {Note }}$

(4) Clevis mount supporting bracket

[^0]
[^0]: Clean system product

