Adjustment Type Linear Orifice® Shock Absorber KSHP Series

Introducing the adjustable linear orifice! Long 3 million cycle operating life! (M42 Exc.) Uses NSF certified H1 oil (non silicon)

KSHC

KSHJ

KSHY

KSHP

General precautions

Cover the unit when mounting it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc. Dents, scratches, water, oil, or dust on the piston rod results in damage and decreases service life.

Mounting

- 1. Keep the angle of eccentricity, resulting from the load direction and the axis of the shock absorber, under the specified values on page **⑤**. If an eccentric load exceeding the specifications is applied, it could result in breakage or impaired returns. If there is concern that an eccentric load exceeding the specified values will be applied, install a guide, or similar mechanism.
- 2. You cannot mount two or more adjustable type shock absorbers in parallel to boost the absorption capacity (it is difficult to adjust the capacity evenly).
- 3. If using a shock absorber with a plastic or rubber cap, always mount a stopper nut (-S) or an external stopper to ensure that the cap is not subjected to loads at the stroke end. Install the stopper nut in a position such that $A \leq$ the stroke of the shock absorber. Furthermore, you can use a shock absorber that has a plastic cap without a stopper nut (-S) or external stopper, but, over the long-term, the stop location will change due to cap deformation and wear.

- 4. Rubber caps are consumable parts. The service life will vary depending on conditions of the application, replace these parts according to their condition.
- 5. If using a shock absorber with a rubber cap for lateral impacts, such as eccentric or swing impacts, note that the rubber cap may come off or be damaged.
- 6. When mounting the shock absorber, always use the following maximum tightening torque guidelines. Tightening using excessive force may result in damage.

Madal	Maximum tigh	itening torque
Model	N⋅m	in • lbf
KSHP6 × 4 (C)(-F11)	0.85	7.523
KSHP8×6 (C)(-11)(-F11)	2.5	22.128
KSHP10×8 (C)(-F11)	6.5	57.532
KSHP11×8 (C)-F11	-	57.5
KSHP12×10 (C,R)(-F11)	8.0	70.808
KSHP14×12 (C,R)(-F11)	12.0	106.2
KSHP16×15 (C,R)	20.0	-
KSHP18×20 (C,R)(-F11)	25.0	221.3
KSHP20×22 (C,R)	30.0	-
KSHP25×25 (C,R)(-F11)	42.0	371.7
KSHP30×30 (C,R)(-F11)	60.0	531.1
KSHP36×50 (C,R)(-F11)	72.0	637.3
KSHP42×50 (C,R)(-F11)	85.0	752.3

- 7. Ensure that the hardness of the surface directly impacting the piston rod of the shock absorber is over HRc40 hardness (excluding models with rubber or plastic caps).
- 8. Be aware that performance and characteristics change depending on the operating temperature.

Adjusting the shock absorbing capacity

- 1. For the KSHP10 to KSHP42 models, align the red mark on the adjusting knob to the 6 on the scale. For the KSHP6 and KSHP8 models, align the 6 on the scale to the key slot on the body.
- 2. For large impacts on collision or if a long time is required for a full stroke, reduce the value on the scale gradually.
- 3. Always tighten the lock screw to fix the knob in place after completing adjustment. (excluding KSHP6 and KSHP8)

How to select shock absorbers

1. Confirm the thrust

Confirm the thrust that is used, and then check the prospective shock absorbers from the table of recommended cylinder bore sizes on page **(19)**. If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than is guaranteed.

2. Confirm the kinetic energy

Confirm I and II below, and then check page 0 for the selection graphs for prospective shock absorbers from [1. Confirm the thrust]. (*)

I Impact object mass: m [kg]

Ⅱ Impact speed: v [m/s]

Because " v " is the impact speed, not the average speed,

when using a cylinder,

v = m [cylinder stroke] \div s [operating time] \times 2

Select a model in which ${\rm I}$ and ${\rm I\hspace{-.1em}I}$ fit within the range enclosed by the capacity curves.

If multiple models are applicable, use the model that is closest to both the capacity curves and the operating conditions. The further the model you select is from the capacity curves and the operating conditions, the slower it will tend to be.

3. Confirm other specifications

Confirm that such specifications as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range are within the range for the shock absorber that you selected.

* The value for the kinetic energy, E, can be found by doing the following calculation. However, the shock absorber's capacity for absorption changes depending on the impact speed. When the shock absorber is doing low-speed operations, it has less drag than when it is doing high-speed operations.

The maximum absorption capacity that is noted in the specifications is reached only at the maximum impact speed.

Therefore, do not choose a shock absorber by comparing E to the maximum absorption capacity; confirm the capacity using the selection graph.

 $\mathsf{E}=\frac{1}{2}\,\mathsf{m}\mathsf{v}^2$

E: Kinetic energy (J) m: Impact object mass [kg] v: Impact speed (m/s)

Range in the selection graph

Vertical axis range :	Impac	t speed
Maximum impact speed $\ge \frac{V}{C}$	perati	ng condition)
Horizontal axis range : Shock absorber's maximum absorption capacity at the impact speed (v = m/s)	2	E Kinetic energy (operating condition)

Calculating the thrust energy is not necessary because the size of the shock absorber is limited by the thrust in step 1.

Koganei's selectable content

You can also select equipment from Koganei's homepage. Visit http://www.koganei.co.jp.

The results of selections using the method above may differ from the results of selections for the selectable content on our homepage. If this happens, please contact us.

Example of selecting a shock absorber [Operating conditions]

- (1)Bore size of the cylinder being used: ϕ 16
- (2) Cylinder stroke: 100 mm = 0.1 m
- ③ Pressure applied to the cylinder: 0.6 MPa
- (4) Cylinder's operating time: 0.4 s

⑤Impact object mass: 10 kg

1. Confirm the thrust

Either calculate or find the thrust in the cylinder thrust table on page 0. The cylinder thrust based on 1 and 3 is about 121 N.

Cylinder thrust	100.5N		120.6N		126N
Cylinder bore size	φ16	<	φ16	<	φ20
Applied pressure	0.5MPa		0.6MPa		0.4MPa

As mentioned above, although the cylinder being used is ϕ 16, the pressure applied to the cylinder exceeds 0.5 MPa, so consider the ϕ 20 cylinder (lower than 0.4 MPa) and check the table of recommended cylinder bore sizes on page **(9**).

The following are prospective models.

- KSHP10×8 KSHP12×10 KSHP14×12
- ·KSHP16×15 ·KSHP18×20 ·KSHP20×22

2. Confirm the kinetic energy

- I The impact object mass m = 10 kg from (5)
- I Find the impact speed, v, from (2) and (4). $v = (2) 0.1 \text{ m} \div (4) 0.4 \text{ s} \times 2$

$$r = (2) 0.1 \text{ m} \div (4) 0.4 \text{ s} \times 10^{-1} \text{ m}$$

According to the selection graphs on page 0, the shock absorber with the optimum absorption capacity for operating conditions is KSHP12×10.

Impact speed u (m/s)

•KSHP10×8 has an insufficient absorption capacity.

•The absorption capacities for all of the other shock absorbers are higher than that of KSHP12×10, so they do not fall within the operating conditions and capacity curves.

3. Confirm other specifications

Verify that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range, are within the specified ranges for KSHP12 \times 10.

KSH

CHSX

Additional Parts

2.0

Selection Guidelines

Recommended cylinder bore size

Cylinder bore	ф /	#6	#8	<u>م</u> 10	#12	ф16	<i>ф</i> 20	م 25	#32	<u>م</u> 40	<u>م 50</u>	#63	ھ 80	<i>ф</i> 100	д 125
Model	ΨŦ	Ψ	Ψΰ	φισ	ΨΙΖ	φισ	Ψ20	Ψ23	Ψ52	φ40	φ30	ψυσ	ψου	φ100	ψ125
KSHP6×4 (-F11)	\diamond	\diamond	\bigcirc	0	0										
KSHP8×6 (-11)(-F11)		\diamond	\diamond	0	O	0									
KSHP10×8 (-F11)			\diamond	\diamond	0	0	0								
KSHP11×8-F11			\diamond	\diamond	0	0	0								
KSHP12×10 (-F11)				\diamond	\diamond	0	0	0							
KSHP14×12 (-F11)					\diamond	\diamond	\bigcirc	\bigcirc	0						
KSHP16×15						\diamond	\diamond	0	0	0					
KSHP18×20 (-F11)							\diamond	\diamond	0	0					
KSHP20×22							\diamond	\diamond	0	0	\bigcirc				
KSHP25×25 (-F11)								\diamond	\diamond	O	\bigcirc	0			
KSHP30×30 (-F11)									\diamond	\diamond	0	0	0		
KSHP36×50 (-F11)										\diamond	\diamond	0	O	0	
KSHP42×50 (-F11)											\diamond	\diamond	0	O	0

 \diamondsuit : 0.3 MPa or higher \bigcirc : 0.5 MPa or lower \bigcirc : 0.4 MPa or lower

Note 1: If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than the value that is guaranteed.

N [lbf.]

Note 2: KSHP11 \times 8 has only inch specifications.

Cylinder thrust

Bore size	Pressure area				Air pr	ressure MPa	[psi.]			
mm [in.]	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]
φ4	12.6 [0.020]	1.3 [0.292]	2.5 [0.562]	3.8 [0.854]	5 [1.124]	6.3 [1.416]	7.5 [1.686]	8.8 [1.978]	10.1 [2.270]	11.3 [2.540]
φ6	28.3 [0.044]	2.8 [0.629]	5.7 [1.281]	8.5 [1.911]	11.3 [2.540]	14.1 [3.170]	17.0 [3.822]	19.8 [4.451]	22.6 [5.080]	25.4 [5.710]
φ8	50.3 [0.078]	5 [1.124]	10.1 [2.270]	15.1 [3.394]	20.1 [4.518]	25.1 [5.642]	30.2 [6.789]	35.2 [7.913]	40.2 [9.037]	45.2 [10.161]
φ10	78.5 [0.122]	7.9 [1.776]	15.7 [3.529]	23.6 [5.305]	31.4 [7.059]	39.3 [8.835]	47.1 [10.588]	55 [12.364]	62.8 [14.117]	70.7 [15.893]
φ12	113 [0.175]	11.3 [2.540]	22.6 [5.080]	33.9 [7.621]	45.2 [10.161]	56.5 [12.701]	67.9 [15.264]	79.2 [17.804]	90.5 [20.344]	101.8 [22.885]
φ16	201 [0.312]	20.1 [4.518]	40.2 [9.037]	60.3 [13.555]	80.4 [18.074]	100.5 [22.592]	121 [27.201]	141 [31.697]	161 [36.193]	181 [40.689]
φ20	314 [0.487]	31.4 [7.059]	62.8 [14.117]	94.2 [21.176]	126 [28.325]	157 [35.294]	188 [42.262]	220 [49.456]	251 [56.425]	283 [63.618]
φ25	491 [0.761]	49.1 [11.038]	98.2 [22.075]	147 [33.046]	196 [44.061]	245 [55.076]	295 [66.316]	344 [77.331]	393 [88.346]	442 [99.362]
φ32	804 [1.246]	80.4 [18.074]	161 [36.193]	241 [54.177]	322 [72.386]	402 [90.370]	483 [108.6]	563 [126.6]	643 [144.5]	724 [162.8]
φ40	1257 [1.948]	126 [28.325]	251 [56.425]	377 [84.750]	503 [113.1]	628 [141.2]	754 [169.5]	880 [197.8]	1005 [225.9]	1131 [254.2]
φ50	1963 [3.043]	196 [44.061]	393 [88.346]	589 [132.4]	785 [176.5]	982 [220.8]	1178 [264.8]	1374 [308.9]	1571 [353.2]	1767 [397.2]
φ63	3117 [4.831]	312 [70.138]	623 [140.1]	935 [210.2]	1247 [280.3]	1559 [350.5]	1870 [420.4]	2182 [490.5]	2494 [560.7]	2806 [630.8]
φ80	5027 [7.792]	503 [113.1]	1005 [225.9]	1508 [339.0]	2011 [452.1]	2513 [564.9]	3016 [678.0]	3519 [791.1]	4021 [903.9]	4524 [1017]
φ100	7854 [12.174]	785 [176.5]	1571 [353.2]	2356 [529.6]	3142 [706.3]	3927 [882.8]	4712 [1059]	5498 [1236]	6283 [1412]	7069 [1589]
φ125	12272 [19.022]	1227 [275.8]	2454 [551.7]	3682 [827.7]	4909 [1104]	6136 [1379]	7363 [1655]	8590 [1931]	9817 [2207]	11045 [2483]

Cautions for using the selection graphs

- 1. The selection graphs are calculated with a cylinder operating air pressure of 0.5 MPa.
- 2. The values in the selection graphs are for room temperature (20 to 25°). Be aware that performance and characteristics change depending on the operating temperature.
- 3. Select a shock absorber that is as close to, yet within, the capacity line(s).
- You can select them on the Koganei home page. Go to http://www.koganei.co.jp The results of selections using our catalog may differ from the results of selections on our homepage.

Linear orifice shock absorber

KSHP Series

Specifications

Model (in inches)	KSHP6×4 (KSHP6×4-F11)	KSł	IP8 × 6, KSHP8 × 6-11 (KSHP8 × 6-F11)						
Maximum absorption capacity J(in.lbs)	0.25 (2.213)		0.75 (6.638)						
Absorption stroke mm(in.)	4 (0.157)		6 (0.236)						
Impact speed range m/s(ft/s)		0.1 to 1 (0.33 to 3.28)							
Maximum operating cycle cycle/min		50							
Maximum absorption capacity per unit of time J/min (in.lbs/min)	7.5 (66.4)		22.5 (199.3)						
Spring return force ^{Note1} N	2.6		2.9						
Deflection angle		1° or less							
Operating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)							
Model (in inches)		KSHP12×10	KSHP14×12						
	(KSHP10×8-F11, KSHP11×8-F11)	(KSHP12×10-F11)	(KSHP14 × 12-F11)						
Maximum absorption capacity J(in.lbs)	2 (17.701)	4 (35.403)	5 (44.254)						
Absorption stroke mm(in.)	8 (0.315)	10 (0.394)	12 (0.472)						
Impact speed range m/s(ft/s)		0.1 to 2 (0.33 to 6.56)							
Maximum operating cycle cycle/min		50							
Maximum absorption capacity per unit of time J/min (in.lbs/min)	60 (531.4)	120 (1062.7)	150 (1328.4)						
Spring return force ^{Note1} N	6.5	9.6	9.0						
Deflection angle									
Operating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)							
Model (in inches)	KSHP16×15	KSHP18×20 (KSHP18×20, E11)	KSHP20×22						
Maximum absorption capacity (in lbs)	10	15 (132.8)	20						
Absorption stroko	15	20 (0 787)	20						
Absolption stroke min(in.)	15	20 (0.787)	22						
Impact speed range III/s(II/s)	4	0.1 10 2 (0.33 10 6.56)	20						
Maximum operating cycle cycle/min	4	0	30						
(in.lbs/min)	240	360 (3188.2)	360						
Spring return force ^{Note1} N	20.5	23.0	18.4						
Deflection angle		3° or less							
Operating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)							
Item	KSHP25 × 25 (KSHP25 × 25-F11)	(KSHP30×30 (KSHP30×30-F11)	(KSHP36 × 50 (KSHP36 × 50-F11)						
Maximum absorption capacity J(in.lbs)	40 (354.0)	110 (973.6)	200 (1770)						
Absorption stroke mm(in.)	25 (0.984)	30 (1.181)	50 (1.969)						
Impact speed range m/s(ft/s)	0.1 to 2 (0.33 to 6.56)	0.1 to 3 (0.	33 to 9.84)						
Maximum operating cycle cycle/min	30	20	15						
Maximum absorption capacity per unit of time J/min (in.lbs/min)	720 (6376.3)	1320 (11690)	1800 (15940.8)						
Spring return force ^{Note1} N	32.3	42.3	65.8						
Deflection angle		3° or less							
Operating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)							
Model (in inches)		KSHP42×50 (KSHP42×50-F11)							
Maximum absorption capacity J(in.lbs)		300 (2655)							
Absorption stroke mm(in.)		50 (1.969)							
Impact speed range m/s(ft/s)		0.1 to 3 (0.33 to 9.84)							
Maximum operating cycle cycle/min		10							
Maximum absorption capacity per unit of time J/min		2000 (17712.0)							
Spring return force ^{Note1} N		64.2							
Deflection angle		3° or less							
Operating temperature range ^{Note2} °C(°E)		0 to 60 (32 to 140)							
oporating tomporatore range 0(1)									

Note1: The spring return force is the force of the piston rod when it returns from a full stroke. It is not stable, so cannot be used as other than rod return. Note2: The shock absorber's shock absorbing capacity fluctuates based on speed and ambient temperature.

Use the product within the ranges of the selection graphs (impact mass, impact speed diagram) on page 🕲.

Note3: KSHP11 has only inch specifications.

* The maximum tightening torque of KSHP11 is different from that of KSHP10. See page **1** for details on the maximum tightening torque. Note4: KSHP16×15 and KSHP20×22 do not have inch specifications.

Mass (Specifications in mm)

Marial	Note	Addition	al mass		Additional parts' mass	<u>_</u>	
Model	Main unit	With plastic cap	With rubber cap	Mounting nut (1 ea.)	Stopper nut	Side mounting bracket	
KSHP6×4	5.1	0.2	—	0.4	2	8	
KSHP8×6 (-11)	11.3(11.5)	0.5	-	0.6(0.9)	4	12	
KSHP10×8	26.5	0.7	_	1.2	7	15	
KSHP12×10	43.5	1.1	1.2	1.9	8	22	
KSHP14×12	66.5	1.1	1.8	4.0	15	41	
KSHP16×15	98.5	1.6	3.4	6.6	28	65	
KSHP18×20	144	4.1	5.3	8.8	37	100	
KSHP20 × 22	186	5.4	6.9	12.2	55	110	
KSHP25 × 25	360	5.3	5.7	23.0	95	360	
KSHP3×30	569	50	49	32.5	140	455	
KSHP36 × 50	1130	110	109	95.5	330	2650	
KSHP42×50	SHP42×50 1515		109	93.0	320	2400	

Calculation example: The mass of KSHP10 \times 8C-S-2 (with cap, stopper, and side mount) is 26.5 + 0.7 + 7 + 15 = 49.2g

Note: The weight of the main unit includes the weight of 2 mounting nuts.

Order Codes (specifications in mm)

Additional Parts (no specifications in inches)

* For the dimension diagrams of the additional parts, see pages @ to @.
* The stopper nut and side mount are made from mild steel (nickel plated).

a

CHSX

KSHY

KSHF

KSHC

Additional Parts

Inner Construction and Major Parts and Materials

●M6,M8 size (11/4-32 UNEF, 5/16-32 UNEF) * The inch sizes are inside the ().

No	Name	Materials							
1	Body	Stainless steel							
2	Piston rod	Stainless steel							
3	Inner tube	Stainless steel							
4	Sleeve	Copper alloy							
(5)	Adjusting knob	Copper alloy (black electroplated)							
6	Plug	Stainless steel							
7	Accumulator	Synthetic rubber							
8	Spring	Spring steel							
9	Rod seal	Synthetic rubber							
10	Oil	Special oil (H1 compliant)							
(1)	Piston ring	Copper alloy							
(12)	Collar	Copper alloy							
(13)	O-ring	Synthetic rubber							
(14)	O-ring	Synthetic rubber							
(15)	O-ring ^{Note}	Synthetic rubber							
(16)	Screw	Mild steel (nickel plated)							
17	Mounting nut	Mild steel (nickel plated)							
(18)	Spring pin	Steel (oxide film)							
(19)	Сар	Plastic (POM)							

Note: Not available for KSHP6×4.

●M10 to M42 size (3/8-32 UNEF to 1 3/4-12 UN) * The inch sizes are inside the ().

With plastic cap (C)

For KSHP 30 \times 30 and KSHP 42 \times 50

With plastic cap (C)

With rubber cap (R)

Note 1: KSHP 10 to 12 are stainless steel

2: KSHP 10 to 14 are slotted lock screws.

3: KSHP 30 to 42 are stainless steel with button

head screw

4: KSHP 10 are copper alloy and KSHP 12 to 14 are sintered metal

5: KSHP 18 to 20 only

•No rod end cap: $\mathbf{KSHP} \supseteq \times \Box$

•With rod end cap

With plastic cap: $\textbf{KSHP} \square \times \square \textbf{C}$

Model Symbol	Α	В	С	D	E	F	G	н	J	L	М	Р	Q	R	S	Т
KSHP6 \times 4 (C)	36	4	32	0.5	M6×0.75	2	8	9.2	2	6.5	5.4	5	8	40	4	4.6
KSHP8 × 6 (C)	46	6	40	1.2	M8×0.75	2	10	11.5	2.5	9	6	6.8	11	51	5	6.5
KSHP8 × 6 (C)-11	46	6	40	1.2	M8×1	3	10	11.5	2.5	9	6	6.8	11	51	5	6.5

•No rod end cap: $KSHP \supseteq \times \Box$

With rod end cap

With plastic cap: $\mathbf{KSHP} \square \times \square \mathbf{C}$

(R) (R) (M) (Stroke) (

Note: Rubber cap is not available with the KSHP10×8

With rubber cap: For the KSHP14 × 12R

Model Symbol	Α	В	С	D	E	F	G	н	J	М	0	Р	Q	R	S	Т	U	V	W	Х
KSHP10×8 (C)	69	8	56	6	M10×1	3	12	13.9	3	5	4	8.7	16	77	8	8	-	-	-	-
KSHP12×10 (C,R)	75	10	60	2	M12×1	4	14	16.2	3	5	4	10.7	20	85	10	10	85	20	10	10
KSHP14 × 12 (C,R)	87	12	70	2	M14×1.5	5	17	19.6	4	5	4	10.7	22	97	10	11	99	24	12	11
KSHP16 × 15 (C,R)	97	15	75	3	M16×1.5	7	19	21.9	4	7	5	13.5	25	107	10	11	113.5	31.5	16.5	13
KSHP18×20 (C,R)	116	20	89	3	M18×1.5	8	21	24.2	5	7	5	13.5	35	131	15	15	131.7	35.7	15.7	15
KSHP20 × 22 (C,R)	121	22	92	3	M20×1.5	8	24	27.7	5	7	5	17	40	139	18	16	139.2	40.2	18.2	16

KSHJ

•No rod end cap: KSHP25 × 25

•With rod end cap

With plastic cap: KSHP25 × 25C

With rubber cap: $\textbf{KSHP25} \times \textbf{25R}$

•No rod end cap: $KSHP \supseteq \times \Box$

•With rod end cap

With plastic cap: $\mathbf{KSHP} \square \times \square \mathbf{C}$ With rubber cap: $\mathbf{KSHP} \square \times \square \mathbf{R}$

Model Symbol	Α	В	С	D	E	F	G	Н	J	К	L	М	0	Р	Q	R	S	Т
KSHP30 × 30 (C,R)	165	30	125.5	4	M30×1.5	10	36	41.6	10	12	28	9.5	5.5	27	50	185	20	25
KSHP36 × 50 (C,R)	229	50	169.5	5	M36×1.5	15	46	53.1	12	12	33	9.5	6	27	55	254	25	32
KSHP42 × 50 (C,R)	235.5	50	173	5	M42×1.5	15	50	57.7	12	20	38	12.5	7	38	75	260.5	25	32

Mass (Specifications in inches)

					OZ
Madal	Moin unitNote1	Addition	nal mass	Additional	parts' mass
MOdel	Main unit	With plastic cap	With rubber cap	Mounting nut (1 ea.)	Stopper nut
KSHP6×4-F11	0.2	0.007	-	0.04	0.1
KSHP8×6-11-F11	0.5	0.02	-	0.06	0.2
KSHP10×8-F11	0.9	0.02	-	0.07	0.4
KSHP11 × 8 -F11	1.2	0.02	-	0.08	0.4
KSHP12×10-F11	1.7	0.04	0.04	0.1	0.5
KSHP14×12-F11	2.6	0.04	0.06	0.2	0.7
KSHP18×20 -F11	5.9	0.1	0.2	0.4	2.5
KSHP25×25-F11	13.2	0.2	0.2	1.1	4.4
KSHP30×30-F11	22.2	1.8	1.7	1.3	5.5
KSHP36×50 -F11	35.3	3.9	3.8	3.0	9.8
KSHP42×50 -F11	63.0	3.9	3.8	3.4	10.8

Calculation example: The mass of KSHP10×8C-S-2 (with cap and stopper) is

0.9 + 0.02 + 0.4 = 1.320z

Note1: The weight of the main unit includes the weight of 2 mounting nuts. Note2: KSHP11x8 has only inch specifications.

Order Codes (specifications in inches)

KSHJ

Dimensions (in)

•No rod end cap: $\mathbf{KSHP} \supseteq \times \Box$

•With rod end cap

With plastic cap: $\mathbf{KSHP} \square \times \square \mathbf{C}$

Model Symbol	Α	В	С	D	E	F	G	Н	J	L	М	Р	R	S
KSHP6 × 4 (C)-F11	1.417	0.157	1.26	0.02	1/4-32 UNEF	0.1	3/8	0.433	0.079	0.335	0.213	0.197	1.575	0.157
KSHP8 \times 6 (C)-F11	1.811	0.236	1.575	0.047	5/16-32 UNEF	0.13	7/16	0.505	0.098	0.358	0.236	0.268	2.008	0.197

Model	Т	AL	AS	AX	AY
KSHP6 × 4 (C)-F11	0.181	1/4-32 UNEF	0.4	3/8	0.433
KSHP8 × 6 (C)-F11	0.256	5/16-32 UNEF	7/16	7/16	0.505

•No rod end cap: $KSHP \supseteq \times \Box$

•With rod end cap

With plastic cap: $\mathbf{KSHP} \square \times \square \mathbf{C}$

Note: Rubber cap is not available with the $\textbf{KSHP10}{\times}\textbf{8}, \\ \textbf{KSHP11}{\times}\textbf{8}$

Model Symbol	Α	В	С	D	E	F	G	Н	J	L	М	Р	R	S
KSHP10×8 (C)-F11	2.724	0.315	2.409	0.157	3/8-32 UNEF	0.13	1/2	0.577	0.118	0.362	0.197	0.335	3.039	0.315
KSHP11 × 8 (C)-F11	2.724	0.315	2.409	0.157	7/16-28 UNEF	0.15	9/16	0.65	0.118	0.362	0.197	0.343	3.039	0.315
$\textbf{KSHP12} \times \textbf{10} \text{ (C,R)-F11}$	2.961	0.394	2.567	0.157	1/2-20 UNF	0.15	5/8	0.722	0.118	0.362	0.197	0.421	3.354	0.394
KSHP14 × 12 (C,R)-F11	3.433	0.472	2.961	0.157	9/16-18 UNF	7/32	11/16	0.794	0.157	0.362	0.197	0.421	3.827	0.394
KSHP18 × 20 (C,R)-F11	4.575	0.787	3.787	0.197	3/4-16 UNF	1/4	15/16	1.082	0.197	0.48	0.276	0.531	5.165	0.591
$\text{KSHP25} \times \text{25} \text{ (C,R)-F11}$	5.874	0.984	4.89	0.197	1-12 UNF	3/8	1 1/4	1.443	0.236	0.48	0.276	0.669	6.583	0.709

AL

AX

Model Symbol	Т	X	Y	AL	AS	AX	AY
KSHP10×8 (C)-F11	0.315	-	-	3/8-32 UNEF	11/16	1/2	0.577
KSHP11 × 8 (C)-F11	0.315	-	-	7/16-28 UNEF	11/16	9/16	0.65
KSHP12 × 10 (C,R)-F11	0.394	0.394	0.394	1/2-20 UNF	11/16	5/8	0.722
KSHP14 × 12 (C,R)-F11	0.433	0.433	0.472	9/16-18 UNF	3/4	11/16	0.794
KSHP18 × 20 (C,R)-F11	0.591	0.591	0.618	3/4-16 UNF	1 1/2	15/16	1.082
KSHP25 × 25 (C,R)-F11	0.63	0.63	0.709	1-12 UNF	1 1/2	1 1/4	1.443

Dimensions (in)

•No rod end cap: $\mathbf{KSHP} \supseteq \times \Box$

●With rod end cap With plastic cap: KSHP□×□C With rubber cap: KSHP□×□R

 <u>NL</u>

Model Symbol	Α	В	С	D	E	F	G	Н	J	К	L	М	Р	R	S
KSHP30 × 30 (C,R)-F11	6.496	1.181	5.315	0.236	1 1/4-12 UNF	3/8	1 1/2	1.732	0.394	0.472	0.591	0.354	1.063	7.283	0.787
KSHP36 × 50 (C,R)-F11	9.016	1.969	7.047	0.276	1 3/8-12 UNF	5/8	1 11/16	1.948	0.472	0.472	0.61	0.354	1.063	10	0.984
KSHP42×50 (C,R)-F11	9.272	1.969	7.303	0.276	1 3/4-12 UN	5/8	2	2.309	0.472	0.787	0.768	0.472	1.496	10.256	0.984

Model Symbol	Т	AL	AS	AX	AY
KSHP30 × 30 (C,R)-F11	0.984	1 1/4-12 UNF	1 1/2	1 1/2	1.732
KSHP36 × 50 (C,R)-F11	1.26	1 3/8-12 UNF	2	1 11/16	1.948
KSHP42 × 50 (C,R)-F11	1.26	1 3/4-12 UN	2	2	2.309

KSHC

CHSX

KSHY

KSHP

Limited Warranty

KOGANEI CORP. warrants its products to be free from defects in material and workmanship subject to the following provisions.

- Warranty Period The warranty period is 180 days from the date of delivery.
- KoganeiIf a defect in material or workmanship is foundResponsibilityduring the warranty period, KOGANEI CORP.
will replace any part proved defective under
normal use free of charge and will provide the
service necessary to replace such a part.
- Limitations This warranty is in lieu of all other warranties, expressed or implied, and is limited to the original cost of the product and shall not include any transportation fee, the cost of installation or any liability for direct, indirect or consequential damage or delay resulting from the defects.

- KOGANEI CORP. shall in no way be liable or responsible for injuries or damage to persons or property arising out of the use or operation of the manufacturer's product.
- This warranty shall be void if the engineered safety devices are removed, made inoperative or not periodically checked for proper functioning.
- Any operation beyond the rated capacity, any improper use or application, or any improper installation of the product, or any substitution upon it with parts not furnished or approved by KOGANEI CORP., shall void this warranty.
- This warranty covers only such items supplied by KOGANEI CORP. The products of other manufacturers are covered only by such warranties made by those original manufacturers, even though such items may have been included as the components.

The specifications are subject to change without notice.

URL http://www.koganei.co.jp

E-mail: overseas@koganei.co.jp

KOGANEI CORPORATION

OVERSEAS DEPARTMENT 3-11-28, Midori-cho, Koganei City, Tokyo 184-8533, Japan Tel: 81-42-383-7271 Fax: 81-42-383-7276

KOGANEI INTERNATIONAL AMERICA, INC.

39300 Civic Center Dr., Suite 280, Fremont, CA 94538, U.S.A. Tel : 1-510-744-1626 Fax : 1-510-744-1676

SHANGHAI KOGANEI INTERNATIONAL TRADING CORPORATION

Room 2606-2607, Tongda Venture Building No.1, Lane 600, Tianshan Road, Shanghai, 200051, China Tel: 86-21-6145-7313 Fax: 86-21-6145-7323

TAIWAN KOGANEI TRADING CO., LTD.

Rm. 2, 13F., No88, Sec. 2, Zhongxiao E. Rd., Zhongzheng Dist., Taipei City 100, Taiwan (ROC) Tel: 886-2-2393-2717 Fax: 886-2-2393-2719

KOGANEI KOREA CO., LTD.

KT&G Cosmo Bldg., 3F, 40-13, Maesanno 2-ga, Paldal-gu, Suwon-si, Gyeonggi-do, 442-847, Korea Tel: 82-31-246-0414 Fax: 82-31-246-0415

KOGANEI (THAILAND) CO., LTD.

3300/90, Tower B, Elephant Tower,16th Fl., Phaholyothin Road, Chomphon, Chatuchak, Bangkok 10900, Thailand Tel: 66-2-937-4250 Fax: 66-2-937-4254

KOGANEI ASIA PTE. LTD.

12 Arumugam road #03-12, Lion Building B, 409958, Singapore Tel: 65-6293-4512 Fax: 65-6293-4513