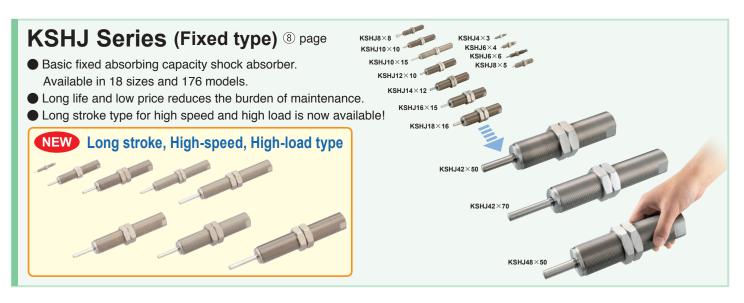
Catalog No.BK-A5050

Linear Orifice[®] Shock Absorber Series

KSHJ (Fixed type)

KSHP (Adjustment Type)

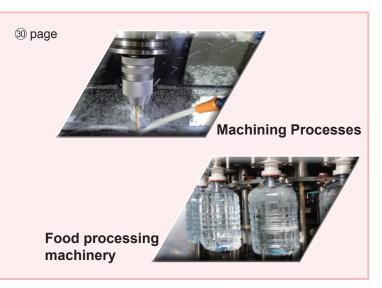
KSHW (Protective type)

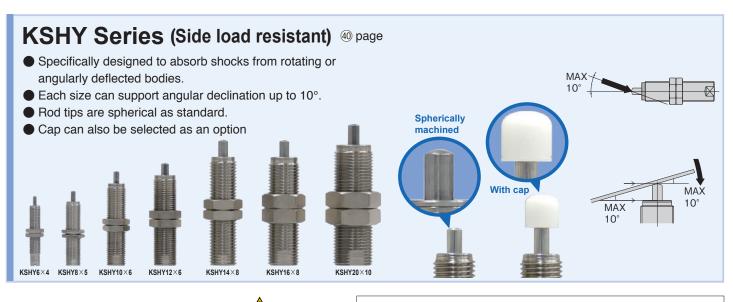


KSHY (Side load resistant)

KSHC (Clean Specifications)

Linear Orifice[®] Shock Absorber Series Variations




KSHW Series (Protective type)

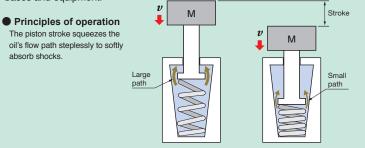
 Environment resistant product that combines 4 functions: Drip-proof, dust-proof, rust-proof, and H1 oil specification.

 Improved resistance to environments where conventional products cannot be used, such as machine cutting processes and food processing machinery.

CAUTION Read the safety precautions on page 5 before using this product.

 You can select the shock absorber that best suits your operating conditions.
 For details, please visit Koganei's website. http://www.koganei.co.jp

Shock Absorber Selection Guide airpressure.jp


KSHC Series (Clean Specifications) 66 page

- This type can be used in clean rooms.
- Capable of JIS/ISO Class 5 equivalent cleanliness (FED–STD Class 100 equivalent) calculated within a 0.1 µm particle.
- A particle pocket structure is used to prevent the scattering of dust.
- Silicone is not used in the hydraulic oil or plastic.
- 40 models in 9 sizes from M4 to M25.


Particle

Linear orifice structure

These shock absorbers achieve their smooth shock absorption characteristics and a long service life thanks to the linear orifice structure that transforms the orifice linearly. Since the linear orifice structure can increase the inner diameter of the shock absorbers without needing an inner tube, the shock absorbers demonstrate similar characteristics to shock absorbers one thread size larger, as well as reduce the vibrations and shocks to bases and equipment.

• "Linear Orifice" is a registered trademark of Koganei Corporation.

	Basic mounting type	withstand their environments	Durable angle of eccentricity	Adjustable type	Clean specification		Options	
Size	KSHJ	KSHW	KSHY	KSHP	кѕнс	Сар	Stopper nut	Side mount
M4×0.5								
M6×0.75				•				
M8×0.75		•		•		_		
M8×1		٠		•				
M10×1				•			Note 3	
M12×1		•		•				
M14×1.5		٠		•				
M16×1.5		•		•		Plastic cap		
M18×1.5				•		Note 1		
M20×1.5				•				
M22×1.5								
M25×1.5				•				
M25×2								
M27×1.5								
M27×3								
M30×1.5				•				
M33×1.5						Rubber cap		
M36×1.5				•		Note 2		
M42×1.5								
M45×1.5								
M48×2						-		

List of linear orifice shock absorber products

Note 1 : Not available for KSHW. 2 : Only for KSHP 12 to 42. 3 : The stopper nut is made of mild steel (nickel plated); KSHW is also available in stainless steel in addition to mild steel (nickel plated).

Fixed type Linear Orifice Shock Absorber KSHJ series 8 page ►►►

Linear Orifice Protection Shock Absorber KSHW series 30 page ►►►

Side load resistant Linear Orifice Shock Absorber KSHY Series 40 page►►►

Adjustment Type Linear Orifice Shock Absorber

KSHP Series

Clean specification Linear Orifice Shock Absorber

KSHC Series 66 page **>>**

Additional Parts 77 page ►►►

KSHJ

KSHW

Before selecting and using the products, please read all the "Safety Precautions" carefully to ensure proper product use. The Safety Precautions described below are to help you use the product safely and correctly, and to prevent injury or damage to you, other people, and assets.

Be sure to observe these safety precautions together with the following safety regulations of ISO4414 (Pneumatic fluid power - General rules and safety requirements for systems and their components), and JIS B 8370 (General rules relating to systems).

The directions are ranked according to degree of potential danger or damage: "DANGER", "WARNING", "CAUTION" and "ATTENTION."

Indicates situations that can be clearly predicted as dangerous. Death or serious injury may result if the situation is not avoided. It could also result in damage or destruction of assets.
Indicates situations that, while not immediately dangerous, could become dangerous. Death or serious injury may result if the situation is not avoided. It could also result in damage or destruction of assets.
Indicates situations that, while not immediately dangerous, could become dangerous. Failure to avoid the situation creates the risk of minor or semi-serious injury. It could also result in damage or destruction of assets.
It could also result in damage or destruction of assets. appropriate use of the product.

This product was designed and manufactured for use in general industrial machinery.

- When selecting and handling equipment, the system designer or another person with sufficient knowledge and experience should always read the "Safety Precautions", "catalog", "instruction manual", and other literature before commencing operation. Improper handling is dangerous.
 After reading the instruction manual, catalog, and other documentation, always place them in a location that allows easy availability for reference to users of this product.
- Whenever transferring or lending the product to another person, always attach the catalog, instruction manual, and other information to the product where they are easily visible in order to ensure that the new user can use the product safely and properly.
- The danger, warning and caution items listed under these "Safety Precautions" do not cover all possible contingencies. Read the catalog and instruction manual carefully, and always keep safety first.

/ DANGER

- Do not use the product for the purposes listed below:
 Medical equipment related to maintenance or management of human lives or bodies.
 - Machines or equipment designed for the purpose of moving or transporting people.
 - Critical safety components in mechanical devices.

This product has not been planned or designed for purposes that require high levels of safety. Using the product in any of the ways described above creates the risk of loss of human life.

- Do not use the product in locations with or near dangerous substances such as flammable or ignitable substances. This product is not explosion-proof. It could ignite or burst into flames.
- When mounting the product and workpiece, always make sure they are firmly supported and secured in place. Ensure the mounting material is strong enough. If the product falls over, is dropped, or breaks, it may result in injury.
- Never attempt to modify the product in any way. Doing so can cause an abnormal operation and create the risk of injury, etc.
- Never attempt inappropriate disassembly, assembly or repair of the product relating to basic construction, or to its performance or to functions. This can lead to injury, etc.
- Do not splash water on the product. (excluding KSHW)
 Spraying it with water, washing it, or using it under water
- Spraying it with water, washing it, or using it under water could result in malfunction leading to injury, etc.
 While the product is in operation, evaluation and the product is in operation.
- While the product is in operation, avoid touching it with your hands or otherwise approaching too close. Also, do not mount shock absorbers or make adjustments while the equipment is in operation. The equipment may move suddenly, possibly resulting in injury.

- Do not use the product in excess of its specification range.
 Doing so creates the risk of product breakdown, loss of function, or damage. It could also drastically reduce operating life.
- The small screw on the back end of the shock absorber should never be loosened or removed. Oil may leak out of the shock absorber leading to a loss of functionality and resulting in injury.
- When conducting any kind of operation for the product, such as maintenance, inspection, repair, or replacement, always turn off the air supply and power to the equipment and make sure that the equipment is completely stopped.
- When mounting the product, always follow the handling instructions and precautions. Also when mounting the product, before operation, check that the mounting nut is tightened and not loose and then operate the product. If the mounting nut is loose, etc., this will result in damage to the equipment and accidents.

- Do not allow the product to be thrown into fire. The product could explode, ignite, and/or release toxic gases.
- Do not apply a load to the product, or place other objects on it. It could lead to damaged or broken products that result in degraded performance, function stops, etc.
- If the product has not been used for over 30 days, it is possible that the contacting parts may have become stuck, leading to abnormal operation at impact. Check for proper operation a minimum of once every 30 days.
- Do not use the product at the beach in direct sunlight, near mercury lamps, or near equipment that generates ozone. Ozone causes rubber components to deteriorate resulting in reduced performance, or a limitation or stop of functions.
- Since our products are used under a wide variety of conditions, the suitability of the system should be thoroughly evaluated by the person responsible for the system design. It is the responsibility of the designer to determine the suitability of the system to ensure the desired performance and safety of the system. Please fully review and evaluate the specifications using the latest catalogs and technical data, consider the possibility of equipment failure, and configure the system to ensure fail-safe and other safety and reliability features.

- Do not use in locations that are subject to direct sunlight (ultraviolet rays); locations with high humidity and temperature, dust, salt, or iron powder; or in locations with fluids and/or ambient atmosphere that include organic solvents, phosphate ester type hydraulic oil, sulfur dioxide, chlorine gas, acids, etc. It could lead to early shutdown of some functions, a sudden degradation of performance, and a reduced operating life. For information about materials, see Major Parts and Materials.
- When installing the product, be sure to allow adequate work space around it. Failure to do so will make it more difficult to conduct daily inspections or maintenance, which could eventually lead to system shutdown or damage to the product.
- When transporting or mounting a heavy product, firmly support the product using a lift or support, or use multiple people to ensure personal safety. Also, wear protective gloves and use safety shoes etc. for protection as necessary.
- Always post an "operations in progress" sign for installations, adjustments, or other operations, to avoid unintentional supplying of air or electrical power, etc. Unintentional supplying of air or electrical power can cause the equipment to operate and may result in injury.
- Never apply lubrication to the product sliding parts. This leads to changes in the physical properties and deterioration of the materials used, resulting in reduced functionality.

- Attempting to use the shock absorber with a cap over the specification range could result in damage to the cap or to its flying off and causing personal injury. Moreover, if cracks or fractures appear in the cap, replace it as quickly as possible.
- Always wash your hands thoroughly after touching the oil or grease used on the shock absorber. There is a danger that the grease or oil from your hands will get on the cigarette and burn, releasing toxic gases, as you smoke the cigarette.
- As a means to prevent vibration, do not use the product at a high frequency that exceeds the value in the catalog. It could drastically reduce the product's operating life.
- When using the shock absorber, gradually increase the speed of the impact object. Suddenly increasing the speed when using the shock absorber may damage the device or injure someone.

- Whenever considering use of this product in situations or environments not specifically noted in the catalog or instruction manual, or in applications where safety is an important requirement such as in aircraft equipment, combustion equipment, leisure equipment, safety equipment, and other places where human life or assets may be greatly affected, take adequate safety precautions such as allowing plenty of margin for ratings and performance, or fail-safe measures. Contact the sales department of Koganei regarding use in such applications.
- When the product can no longer be used, or is no longer necessary, dispose of it appropriately, according to the "Law Regarding the Disposal and Cleaning of Waste" or other local governmental rules and regulations, as industrial waste. Incinerating the special oil in the KSHC series (clean specification) or the KSHJ series (short stroke type) generates hazardous fluorine (HF), which is corrosive and toxic. Because of this, incineration must be done in an incinerator that has neutralizing equipment that can handle acids. For large amounts, ask a registered waste disposal company.
- The product can exhibit degraded performance and function over its operating life. Always conduct daily inspections and confirm that all requisite system functions are satisfied, to prevent accidents from happening.
- When handling the product, wear protective gloves, safety glasses, safety shoes, and other protective clothing.
- The maximum absorption in the specifications are for a normal temperature (20 to 25°C [68 to 77°F]). Be aware that performance and characteristics change depending on the operating temperature.
- The shock absorber's absorption capacity changes depending on the speed of the impacting object. Use the product within the ranges of the selection graphs.
- For inquiries about the product, consult your nearest Koganei sales office or Koganei Overseas Department. The addresses and telephone numbers are shown on the back cover of this catalog.

⚠ Other

- Always observe the following items.
- When using this product in a system, use only genuine Koganei parts or equivalent (recommended) parts. When conducting maintenance and repairs, always use genuine Koganei parts or compatible parts (recommended parts).
- Always observe the prescribed methods and procedures.
 Never attempt unauthorized disassembly or assembly of the product relating to its basic construction, its performance, or its functions.

Koganei shall not be held responsible for any problems that occur as a result of these items not being properly observed.

Warranty and General Disclaimer

1. Warranty Period

Koganei warrants this product for a period of no more than 1 year from delivery.

- * However, some products have a 2-year warranty; contact your nearest Koganei sales office or the Koganei Technical Service Center for details.
- 2. Scope of Warranty and General Disclaimer
- (1) When a product purchased from Koganei or from an authorized Koganei distributor malfunctions during the warranty period in a way that is found to be attributable to Koganei responsibility, Koganei will repair or replace the product free of charge. Even if a product is still within the warranty period, its durability is determined by its operation cycles and other factors. Contact your nearest Koganei sales office or the Koganei overseas department for details.
- (2) The Koganei product warranty covers only the product itself. Therefore, Koganei is not responsible for incidental losses (repair of the product, various expenses required for replacement, etc.) caused by breakdown, loss of function, or loss of performance of Koganei products.
- (3) Koganei shall not be held responsible for any losses or for any damage to other machinery caused by breakdown, loss of function, or loss of performance of Koganei products.
- (4) Koganei shall not be held responsible for any losses due to use or storage of the product in a way that is outside of the product specifications prescribed in Koganei catalogs and the instruction manual, and/or due to actions that violate the mounting, installation, adjustment, maintenance and other safety precautions.
- (5) Koganei shall not be held responsible for any losses caused by breakdown of the product due to factors outside the responsibility of Koganei, including but not limited to fire, natural disaster, the actions of third parties, and intentional actions or errors by you.

Linear Orifice[®] Shock Absorbers KSHJ Series

KSHW

Shock absorbers designed by pneumatic cylinder engineers Linear Orifice[®] Shock Absorber KSHJ Series (fixed type) • "Linear Orifice" is a registered trademark of Koganei Corporation.

A wealth of variations with sizes from 10-32UNF to 1 3/4-12UN 12 sizes and 92 models

KSHJ42×50

Supports a wide variety of impact masses

KSHJ4×3 KSHJ6×4

KSHJ6×6 KSHJ8×5

KSHJ8×8 KSHJ10×10

KSHJ10×15

KSHJ12×10

KSHJ14×12

KSHJ16×15

KSHJ18×16

Supports a wide range of impacting objects, from grams (g) with the M4 size to tons (t) with the M48 size.

Supports a wide variety of impact speeds

Supports maximum impact speeds of 0.8 m/s to 3 m/s.

Stopper nut not needed

Workpieces directly contact the end of the body, so there is no need for mounting a stopper nut. Mounting is easy and saves space.

Body is entirely threaded

Entire body is threaded to maximize the range of installation positions and also improve heat dissipation.

Note: Except for M4 and M6 (10-32UNF, 1/4-32UNEF) sizes.

Supports high cycle times

Reduces the time from impact to end of operation. Even if the workpiece mass and speed changes, our original linear orifice construction automatically adjusts to prevent wasted operation time. Combined with reduced vibration, this contributes to improved productivity.

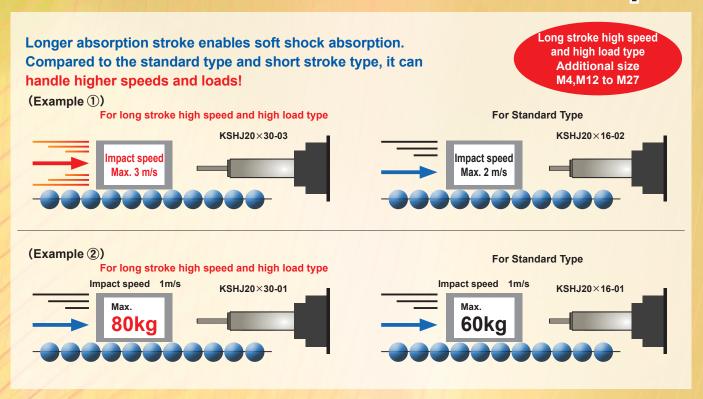
Silent design

KSHJ48×50

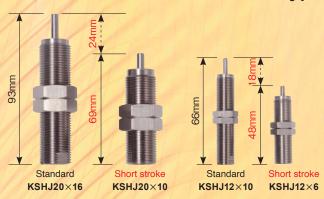
KSH 142×70

Reducing the impact value at collision decreases the noise at workpiece impact.

Short stroke type


Perfect in low speed range for shock absorbing in limited spaces.

Long stroke type


Making the absorbing stroke longer allows for softer absorption of shocks.

CAUTION Read the safety precautions on page (5) before using this product.

NEW Long stroke high speed and high load type Variation Up !

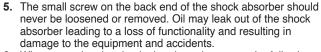
short stroke type (with hexagon socket)

Overall length reduced for shock absorbing in tight locations!

Up to 26% reduction in overall length compared to the same standard threaded body type (for M20). Excellent for absorbing shocks in tight locations as a stopper between 2 cylinder stroke ends because overall short length. Fine position adjustments are easy with more models available with hex sockets.

List of KSHJ body thread sizes [Specifications in mm]

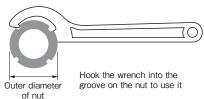
0.		Model		Deal three d	Latin and the
Size	Short stroke	Standard	Long stroke	Body thread	l size x pitch
M4	—	KSHJ4×3	KSHJ4×5 NEW	M4×0.5	—
M6	—	KSHJ6×4	KSHJ6×6	M6×0.75	—
M8	KSHJ8×4	KSHJ8×5	KSHJ8×8	M8×0.75	M8×1
M10	KSHJ10×6	KSHJ10×10	KSHJ10×15	M10×1	—
M12	KSHJ12×6	KSHJ12×10	KSHJ12×15 NEW	M12×1	—
M14	KSHJ14×8	KSHJ14×12	KSHJ14×20 NEW	M14×1.5	—
M16	KSHJ16×8	KSHJ16×15	KSHJ16×20 NEW	M16×1.5	—
M18	—	KSHJ18×16	KSHJ18×30 NEW	M18×1.5	—
M20	KSHJ20×10	KSHJ20×16	KSHJ20×30 NEW	M20×1.5	—
M22	—	KSHJ22×25	KSHJ22×30 NEW	M22×1.5	—
M25	—	KSHJ25×25	KSHJ25×40 NEW	M25×1.5	M25×2
M27	—	KSHJ27×25	KSHJ27×40 NEW	M27×1.5	M27×3
M30	—	KSHJ30×30	—	M30×1.5	—
M33	_	KSHJ33×30	_	M33×1.5	_
M36	_	KSHJ36×50	_	M36×1.5	_
M42	_	KSHJ42×50	KSHJ42×70	M42×1.5	—
M45	—	KSHJ45×50	—	M45×1.5	—
M48	_	KSHJ48×50	—	M48×2	—


General precautions

Cover the unit when mounting it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc. Dents, scratches, water, oil, or dust on the piston rod results in damage and decreases service life.

- Keep the angle of eccentricity, resulting from the load direction and the axis of the shock absorber, under the specified values on pages (7) to (19). If an eccentric load exceeding the specifications is applied, it could result in breakage or impaired returns. If there is concern that an eccentric load exceeding the specified values will be applied, install a guide, or similar mechanism.
- 2. Two or more shock absorbers can be mounted in parallel, to boost absorption capacity. In such an arrangement, however, be careful to ensure that the load is evenly distributed to each shock absorber.
- **3.** To adjust the capacity with the stroke, adjust the stopper nut (-S) or add an external stopper.
- 4. If using with a cap, always mount a stopper nut (-S) or an external stopper to ensure that the cap is not subjected to loads at the stroke end. The stopper nut mounting position must not exceed the distance shown in the table below. You can use it without a stopper nut or external stopper, but over the long-term, the stop location changes due to cap deformation and wear.

	l A	ł
Model	mm	in
KSHJ4×3C-01,-02 (-F11)	3	0.12
KSHJ6×4C-01,-02 (-F11)	4	0.16
KSHJ6×6C-01,-02 (-F11)	6	0.24
KSHJ8×4C-01,-02,-11,-12 (-F11)	4	0.16
KSHJ8×5C-01,-11 (-F11)	5	0.20
KSHJ8×8C-01,-02,-11,-12 (-F11)	8	0.31
KSHJ10×6C-01,-02 (-F11)	6	0.24
KSHJ11×6C-F11-01,-02	—	0.24
KSHJ10×10C-01,-02 (-F11)	10	0.40
KSHJ11×10C-F11-01,-02	—	0.40
KSHJ10×15C-01,-03 (-F11)	15	0.60
KSHJ11×15C-F11-01,-03	—	0.60
KSHJ12×6C-01,02 (-F11)	6	0.24
KSHJ12×10C-01,-02 (-F11)	10	0.40
KSHJ14×8C-01,02 (-F11)	8	0.31
KSHJ14×12C-01,-02 (-F11)	12	0.47
KSHJ16×8C-01,-02	8	
KSHJ16×15C-01,-02	15	_
KSHJ18×16C-01,-02 (-F11)	16	0.63
KSHJ20×10C-01,-02	10	—
KSHJ20×16C-01,-02	16	
KSHJ22×25C-01,-02	25	_
KSHJ25×25C-01,-11,-12 (-F11)	25	0.98
KSHJ27×25C-01,-02,-11,-12	25	—
KSHJ30×30C-01,-02,-03 (-F11)	30	1.18
KSHJ33×30C-01,-02,-03	30	_
KSHJ36×50C-01,-02,-03 (-F11)	50	1.97
KSHJ42×50C-01,-02 (-F11)	50	1.97
KSHJ42×70C-01,-02 (-F11)	70	2.76
KSHJ45×50C-01,-02	50	_
KSHJ48×50C-01,-02	50	



6. When mounting the shock absorber, always use the following maximum tightening torque guidelines. Tightening using excessive force may result in damage.

	Maximum tigh	tening torque
Model	N⋅m	in ∙ lbf
KSHJ4×3 (C)-01,-02 (-F11)	0.5	4.43
KSHJ6×4 (C)-01,-02 (-F11)	0.85	7.52
KSHJ6×6 (C)-01,-02 (-F11)	0.85	7.52
KSHJ8×4 (C)-01,-02,-11,-12 (-F11)	2.5	22.12
KSHJ8×5 (C)-01,-11 (-F11)	2.5	22.12
KSHJ8×8 (C)-01,-02,-11,-12 (-F11)	2.5	22.12
KSHJ10×6 (C)-01,-02 (-F11)	6.5	57.53
KSHJ11×6 (C)-01,-02	-	57.5
KSHJ10×10 (C)-01,-02 (-F11)	6.5	57.53
KSHJ11×10 (C)-01,-02		57.5
KSHJ10×15 (C)-01,-03 (-F11)	6.5	57.53
KSHJ11×15 (C)-01,-03	-	57.5
KSHJ12×6 (C)-01,02 (-F11)	8.0	70.80
KSHJ12×10 (C)-01,-02 (-F11)	8.0	70.80
KSHJ14×8 (C)-01,02 (-F11)	12.0	106.21
KSHJ14×12 (C)-01,-02 (-F11)	12.0	106.21
KSHJ16×8 (C)-01,-02	20.0	_
KSHJ16×15 (C)-01,-02	20.0	_
KSHJ18×16 (C)-01,-02 (-F11)	25.0	221.28
KSHJ20×10 (C)-01,-02	30.0	—
KSHJ20×16 (C)-01,-02	30.0	—
KSHJ22×25 (C)-01,-02	35.0	—
KSHJ25×25 (C)-01,-11,-12 (-F11)	42.0	371.74
KSHJ27×25 (C)-01,-02,-11,-12	42.0	—
KSHJ30×30 (C)-01,-02,-03 (-F11)	60.0	531.06
KSHJ33×30 (C)-01,-02,-03	60.0	
KSHJ36×50 (C)-01,-02,-03 (-F11)	72.0	531.06
KSHJ42×50 (C)-01,-02 (-F11)	85.0	637.27
KSHJ42×70 (C)-01,-02 (-F11)	85.0	637.27
KSHJ45×50 (C)-01,-02	85.0	_
KSHJ48×50 (C)-01,-02	120.0	

Note: The **KSHJ45**×**50(C)-01**, and **-02** use nominal number AN09 mounting nut prescribed in JIS B1554 (nuts for rolling bearings). Use a hook wrench (nominal 58 to 65 or 65 to 70) for tightening.

- 7. Ensure that the hardness of the surface directly impacting the piston rod of the shock absorber is over HRc40 hardness (excluding models with cap).
- 8. Be aware that performance and characteristics change depending on the operating temperature.

How to select shock absorbers

1. Confirm the thrust

Confirm the thrust that is used, and then check the prospective shock absorbers from the table of recommended cylinder bore sizes on page 13. If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than is guaranteed.

2. Confirm the kinetic energy

Confirm I and II below, and then check pages (4) to (6) for the selection graphs for prospective shock absorbers from [1. Confirm the thrust]. (*)

I Impact object mass: m [kg]

I Impact speed: v [m/s]

Because "v" is the impact speed, not the average speed,

when using a cylinder,

v = m [cylinder stroke] \div s [operating time] $\times 2$

Select a model in which I and I fit within the range enclosed by the capacity curves.

If multiple models are applicable, use the model that is closest to both the capacity curves and the operating conditions. The further the model you select is from the capacity curves and the operating conditions, the slower it will tend to be.

3. Confirm other specifications

Confirm that such specifications as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range are within the range for the shock absorber that you selected.

* The value for the kinetic energy, E, can be found by doing the following calculation. However, the shock absorber's capacity for absorption changes depending on the impact speed. When the shock absorber is doing low-speed operations, it has less drag than when it is doing high-speed operations.

The maximum absorption capacity that is noted in the specifications is reached only at the maximum impact speed.

Therefore, do not choose a shock absorber by comparing E to the maximum absorption capacity; confirm the capacity using the selection graph.

 $E=\frac{1}{2}mv^2$

E: Kinetic energy (J) m: Impact object mass [kg] v: Impact speed (m/s)

Range in the selection graph

Horizontal axis range : Shock absorber's maximum absorption capacity at the impact speed (v = m/s)	≧	E Kinetic energy (operating condition)
Vertical axis range :	Impa	ct speed
Maximum impact speed $\ge V_{(0)}^{V}$	perat	ing condition)

Calculating the thrust energy is not necessary because the size of the shock absorber is limited by the thrust in step 1.

Koganei's selectable content

You can also select equipment from Koganei's homepage. Visit http://www.koganei.co.jp.

The results of selections using the method above may differ from the results of selections for the selectable content on our homepage. If this happens, please contact us.

- Example of selecting a shock absorber [Operating conditions]
 - (1) Bore size of the cylinder being used: ϕ 16
 - 2 Cylinder stroke: 100 mm = 0.1 m
 - ③Pressure applied to the cylinder: 0.6 MPa

(4) Cylinder's operating time: 0.4 s

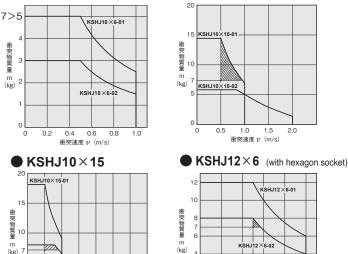
(5) Impact object mass: 7 kg

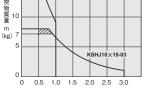
1. Confirm the thrust

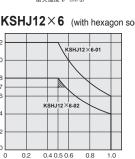
Either calculate or find the thrust in the cylinder thrust table on page (3). The cylinder thrust based on ① and ③ is about 121 N.

Cylinder thrust	100.5N		120.6N		126N
Cylinder bore size	φ16	<	φ16	<	φ20
Applied pressure	0.5MPa		0.6MPa		0.4MPa

As mentioned above, although the cylinder being used is ϕ 16, the pressure applied to the cylinder exceeds 0.5 MPa, so consider the ϕ 20 cylinder (lower than 0.4 MPa) and check the table of recommended cylinder bore sizes on page 13.


- The following are prospective models.
- · KSHJ10×10 · KSHJ10×15 • KSHJ10×6
- · KSHJ12×6 · KSHJ12×10
- KSHJ14×8 · KSHJ14×12
- · KSHJ16×15


2. Confirm the kinetic energy


- I The impact object mass m = 7 kg from 5
- ${\rm I\!I}\,$ Find the impact speed, v, from 2 and 4.
 - v = ② 0.1 m ÷ ④ 0.4 s × 2
 - = 0.5 m/s

According to the selection graphs on pages (1) to (16), the shock absorber with the optimum absorption capacity for operating conditions is KSHJ12×6-02.

KSHJ10×6 (with hexagon socket) **KSHJ10×10**

衝突速度 v (m/s)

•KSHJ10×6 and 10×10-02 have an insufficient absorption capacity. •KSHJ10×15-03, 12×6-01....KSHJ12×6-02 come closer to the operating conditions and capacity curves.

•The absorption capacities for all of the other shock absorbers are higher than that of KSHJ12×6-02, so they do not fall within the operating conditions and capacity curves.

3. Confirm other specifications

Verify that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range, are within the specified ranges for KSHJ12×6-02.

KSHC

Recommended cylinder bore size

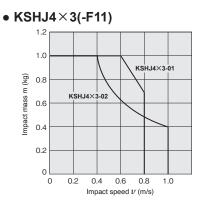
Cylinder bore	Φ4	φ6	Φ8	φ10	φ12	φ16	φ20	φ25	φ32	φ 40	φ50	φ63	Φ80	φ100	φ125	φ140	φ 160	φ180	φ 200
Model	Ψ-	Ψ	Ψυ	φισ	ΨΙΖ	ψισ	φ20	ΨΖΟ	Ψ32	φ+0	φ 30	φυσ	φυυ	φιου	ψ123	ψιτυ	φ100	φ100	ΨΖΟ
KSHJ4×3 (-F11)	\diamond	0	0																
KSHJ6×4 (-F11)		\diamond	\bigcirc	0															
KSHJ6×6 (-F11)		\diamond	\bigcirc	0															
KSHJ8×4 (-F11)(with hexagon socket)				\diamond	0	0	0												
KSHJ8×5 (-F11)			\diamond	0	0	0													
KSHJ8×8 (-F11)			\diamond	0	0	0													
KSHJ10×6 (-F11)(with hexagon socket)					\diamond	\bigcirc	0	0											
KSHJ10×10 (-F11)				\diamond	0	0	0												
KSHJ10×15 (-F11)				\diamond	0	0	0												
KSHJ11×6-F11					\diamond	0	0	0											
KSHJ11×10-F11				\diamond	0	0	0												
KSHJ11×15-F11				\diamond	0	0	0												
KSHJ12×6 (-F11)(with hexagon socket)						\diamond	0	0	0										
KSHJ12×10 (-F11)					\diamond	0	0	0											
KSHJ14 × 8 (-F11) (with hexagon socket)							\diamond	0	0	0									
KSHJ14×12 (-F11)						\diamond	0	0	0										
KSHJ16×8 (with hexagon socket)								\diamond	0	0	0								
KSHJ16×15							\diamond	0	0	0									
KSHJ18×16 (-F11)								\diamond	0	0									
KSHJ20×10 (with hexagon socket)									\diamond	0	0	0							
KSHJ20×16									\diamond	0	0								
KSHJ22×25									-	\diamond	0	0							
KSHJ25×25 (-F11)										\diamond	0	0	0						
KSHJ27×25										\diamond	0	0	0						
KSHJ30×30 (-F11)											\diamond	0	0	0					
KSHJ33×30											\diamond	0	0	0					
KSHJ36×50 (-F11)												\diamond	0	0	0	0			
KSHJ42×50 (-F11)												\diamond	\diamond	0	0	0	0		
KSHJ42×70 (-F11)												\diamond	\diamond	0	0	0	0		
KSHJ45×50												\diamond	\diamond	0	0	0	0		
KSHJ48×50												÷	\diamond	\diamond	0	0	0	0	0

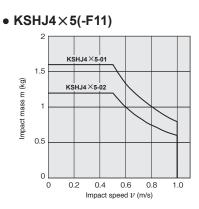
 \bigcirc : 0.3 MPa or higher $\quad \bigcirc$: 0.5 MPa or lower $\quad \bigcirc$: 0.4 MPa or lower

Note 1: If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than the value that is guaranteed.

N [lbf.]

Note 2: KSHJ11×6, KSHJ11×10, and KSHJ11×15 have only inch specifications.


Cylinder thrust


										14 [101:]
Bore size	Pressure area				Air p	pressure MPa	a [psi.]			
mm [in.]	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]
φ4	12.9 [0.01]	1.3 [0.2]	2.5 [0.6]	3.8 [0.9]	5 [1.1]	6.3 [1.4]	7.5 [1.7]	8.8 [2.0]	10.1 [2.3]	11.3 [2.5]
φ6	28.3 [0.04]	2.8 [0.6]	5.7 [1.3]	8.5 [1.9]	11.3 [2.5]	14.1 [3.2]	17.0 [3.8]	19.8 [4.5]	22.6 [5.1]	25.4 [5.7]
φ8	50.3 [0.08	5 [1.1]	10.1 [2.3]	15.1 [3.4]	20.1 [4.5]	25.1 [5.6]	30.2 [6.8]	35.2 [7.9]	40.2 [9.0]	45.2 [10.2]
φ10	78.5 [0.12]	7.9 [1.8]	15.7 [3.5]	23.6 [5.3]	31.4 [7.1]	39.3 [8.8]	47.1 [10.6]	55 [12.4]	62.8 [14.1]	70.7 [15.9]
φ12	113 [0.18]	11.3 [2.5]	22.6 [5.1]	33.9 [7.6]	45.2 [10.2]	56.5 [12.7]	67.9 [15.3]	79.2 [17.8]	90.5 [20.3]	101.8 [22.9]
φ16	201 [0.31]	20.1 [4.5]	40.2 [9.0]	60.3 [13.6]	80.4 [18.1]	100.5 [22.6]	121 [27.2]	141 [31.7]	161 [36.2]	181 [40.7]
φ20	314 [0.49]	31.4 [7.1]	62.8 [14.1]	94.2 [21.2]	126 [28.3]	157 [35.3]	188 [42.3]	220 [49.5]	251 [56.4]	283 [63.7]
φ25	491 [0.76]	49.1 [11.0]	98.2 [22.1]	147 [33.0]	196 [44.1]	245 [55.1]	295 [66.3]	344 [77.3]	393 [88.3]	442 [99.4]
φ32	804 [1.25]	80.4 [18.1]	161 [36.2]	241 [54.2]	322 [72.4]	402 [90.4]	483 [108.6]	563 [126.6]	643 [144.6]	724 [162.8]
φ40	1257 [1.95]	126 [28.3]	251 [56.4]	377 [84.8]	503 [113.1]	628 [141.2]	754 [169.5]	880 [197.8]	1005 [225.9]	1131 [254.3]
φ50	1963 [3.04]	196 [44.1]	393 [40.1]	589 [132.4]	785 [176.5]	982 [220.8]	1178 [264.8]	1374 [308.9]	1571 [353.2]	1767 [397.2]
φ63	3117 [4.83]	312 [70.1]	623 [63.5]	935 [210.2]	1247 [280.3]	1559 [350.5]	1870 [420.4]	2182 [490.5]	2494 [560.7]	2806 [630.8]
φ80	5027 [7.80]	503 [113.1]	1005 [102.5]	1508 [339.0]	2011 [452.1]	2513 [564.9]	3016 [678.0]	3519 [791.1]	4021 [904.0]	4524 [1017.0]
φ100	7854 [12.17]	785 [176.5]	1571 [160.2]	2356 [529.6]	3142 [706.3]	3927 [882.8]	4712 [1059.3]	5498 [1236.0]	6283 [1412.5]	7069 [1589.2]
φ125	12272 [19.02]	1227 [275.8]	2454 [250.2]	3682 [827.7]	4909 [1103.6]	6136 [1379.4]	7363 [1655.3]	8590 [1931.1]	9817 [2206.9]	11045 [2483.0]
φ140	15394 [23.86]	1539 [346.0]	3079 [314.0]	4618 [1038.2]	6158 [1384.4]	7697 [1730.4]	9236 [2076.3]	10776 [2422.5]	12315 [2768.5]	13854 [3114.5]
φ160	20106 [31.16]	2011 [452.1]	4021 [904.0]	6032 [1356.0]	8042 [1808.0]	10053 [2260.0]	12064 [2712.1]	14074 [3164.0]	16085 [3616.1]	18096 [4068.1]
φ180	25447 [39.44]	2545 [572.1]	5089 [1144.1]	7634 [1716.2]	10179 [2288.3]	12723 [2860.2]	15268 [3432.4]	17813 [4004.5]	20358 [4576.7]	22902 [5148.6]
φ200	31416 [48.69]	3142 [706.4]	6283 [1412.5]	9425 [2118.8]	12566 [2824.9]	15708 [3531.3]	18850 [4237.6]	21991 [4943.8]	25133 [5650.1]	28274 [6356.3]

Cautions for using the selection graphs

- 1. The selection graphs are calculated with a cylinder operating air pressure of 0.5 MPa.
- The values in the selection graphs are for room temperature (20 to 25°). Be aware that performance and characteristics change depending 2. on the operating temperature.
- Select a shock absorber that is as close to, yet within, the capacity line(s). 3.
- You can select them on the Koganei home page. Go to http://www.koganei.co.jp 4.
 - The results of selections using our catalog may differ from the results of selections on our homepage.

Selection graph

• KSHJ6×4(-F11)

8

6

2

0

0 0.2 0.4 0.6 0.8 1.0

• KSHJ10×10(-F11)

• KSHJ11 × 10-F11 20

15 KSHJ10×

KSHJ10

0.5

1.0

Impact speed v (m/s)

1.5

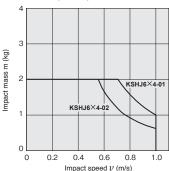
2.0

Impact mass m (kg)

10

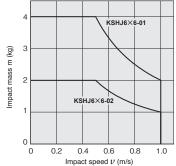
F

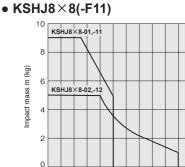
0


0

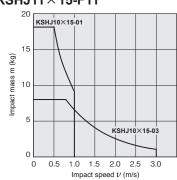
10-0

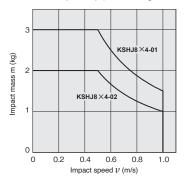
KSHJ8 × 5-01

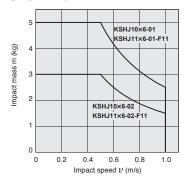

Impact speed v (m/s)


Impact mass m (kg)

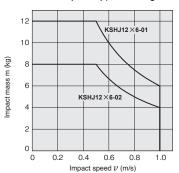
• KSHJ8×4(-F11) (with hexagon socket) • KSHJ8×5(-F11)

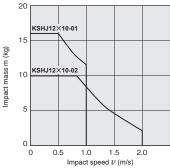

• KSHJ6×6(-F11)



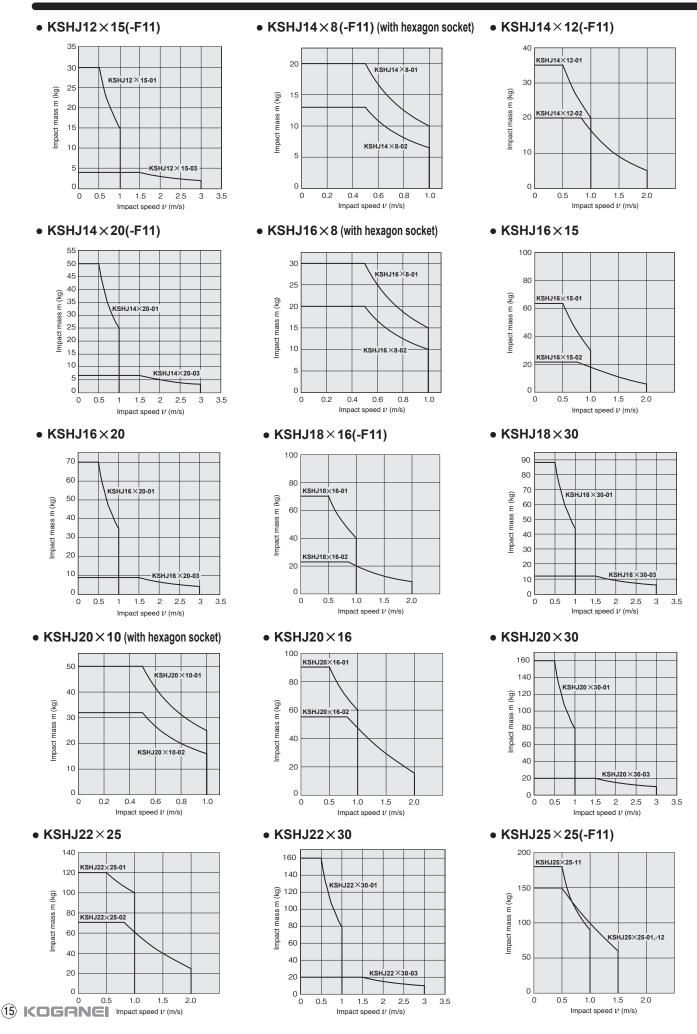


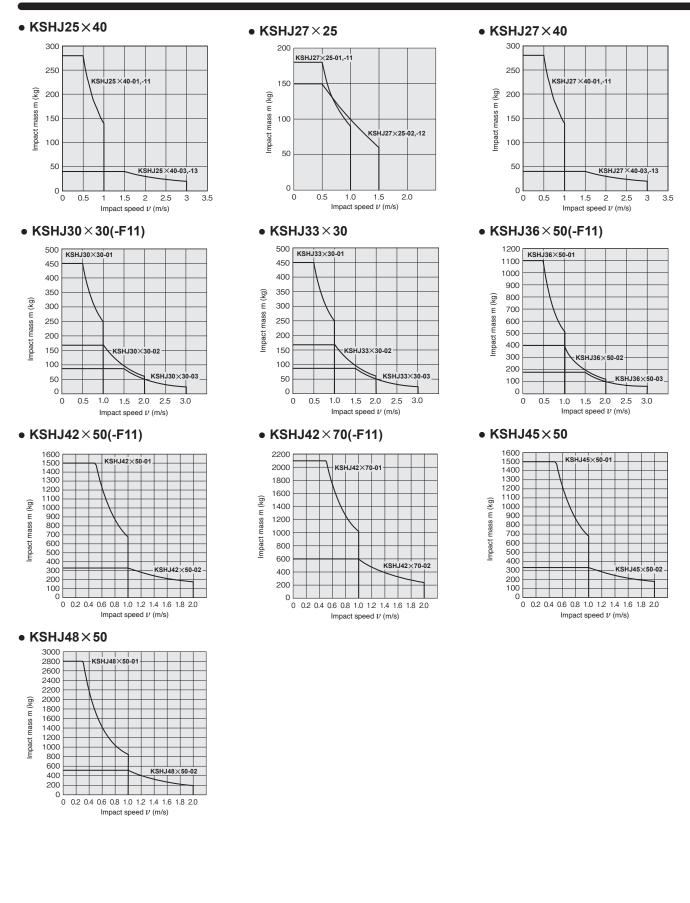
• KSHJ10×15(-F11) • KSHJ11×15-F11




• KSHJ10 × 6 (-F11) (with hexagon socket) • KSHJ11×6-F11

• KSHJ12×6(-F11)(with hexagon socket) • KSHJ12×10(-F11)





KSHC

Selection Guidelines

Selection Guidelines

Linear orifice shock absorber

KSHJ Series

Specifications

Item	Model (in inches)	KSHJ4×3-01 (KSHJ4×3-01-F11)	KSHJ4×3-02 (KSHJ4×3-02-F11)	KSHJ4×5-01	KSHJ4×5-02	KSHJ6×4-01 (KSHJ6×4-01-F11)	KSHJ6×4-02 (KSHJ6×4-02-F11)				
Maximum absorption capacity	J(in.lbs)	0.3 (2.7)	0.2 (1.8)	0.4 (3.5)	0.3 (2.7)	0.5 (4.4)	0.3 (2.7)				
Absorption stroke	mm(in.)	3 (0.	118)	5		4 (0.	157)				
Impact speed range	m/s(ft/s)	0.1 to 0.8 (0.33 to 2.62)	0.1 to 1 (0.33 to 3.28)	0.1 to 1 (0.3	33 to 3.28)	0.1 to 1 (0.	33 to 3.28)				
Maximum operating cycle	cycle/min			90)						
Maximum absorption capacity per unit of tir	me J/min (in.lbs/min)	10 (8	8.6)	8 (70	0.8)	20 (1	77.1)				
Spring return force ^{Note1}	N	2	2	1.	5		3				
Deflection angle				1° or	less	I					
Operating temperature range ^{Note2}	°C(°F)	0 to 60 (32 to 140)									
	Model (in inches)	KSHJ6×6-01	KSHJ6×6-02	KSHJ8×4-01, (KSHJ8×4-01, -11-		12 E11) NONJO × 3-01, -11					
Item		(KSHJ6×6-01-F11)	(KSHJ6×6-02-F1	(with hexagon soc		(NSH.	l8×5-01-F11)				
Maximum absorption capacity	J(in.lbs)	1 (8.9)	0.5 (4.4)	0.75 (6.6)	0.5 (4.4	4)	1 (8.9)				
Absorption stroke	mm(in.)	6 (0.236)		4 (0.157)	5	5 (0.197)				
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to	1 (0.33 to 3.28)	0.1 to 1	(0.33 to 3.28)				
Maximum operating cycle	cycle/min		30		60		90				
Maximum absorption capacity per unit of til	me J/min (in.lbs/min)	15 ((132.8)		15 (132.8)	3	6 (318.8)				
Spring return force ^{Note1}	N		4		6		6				
Deflection angle				1° or	less						
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3	2 to 140)						
	Model (in inches)			KSHJ10×6-01	KSHJ10×6-02						
		KSHJ8×8-01, -11 (KSHJ8×8-01, -11-F11)	KSHJ8×8-02, -12 (KSHJ8×8-02,-12-F11)	(KSHJ10×6-01-F11) (KSHJ11×6-01-F11)	(KSHJ10×6-02-F11) (KSHJ11×6-02-F11)	KSHJ10×10-01 (KSHJ10×10-01-F11) (KSHJ11×10-01-F11)	KSHJ10×10-02 (KSHJ10×10-02-F11) (KSHJ11×10-02-F11)				
Item	J(in.lbs)	2.(1)	7 7)	(with hexagon socket)		3 (2	6 6)				
Maximum absorption capacity Absorption stroke	mm(in.)	2 (1	,	1.25 (11.1)	0.75 (6.6)	10 (0					
•	. ,	` · · · ·	8 (0.315) I to 1 (0.33 to 3.28) 0.1 to 2 (0.33 to 6.56)		6 (0.236) 0.1 to 1 (0.33 to 3.28)		0.1 to 2 (0.33 to 6.56)				
Impact speed range	cycle/min	9		60.11.01 (0.3		90					
Maximum operating cycle		60 (5		45 (39	-	120 (1062.7)					
Maximum absorption capacity per unit of tin Spring return force ^{Note1}	N	8.	· ·	45 (3:	,	8					
Deflection angle	IN	0.	0				<u> </u>				
Operating temperature range ^{Note2}	°C(°F)		1° or less 0 to 60 (32 to 140)								
	× ,		1	(0) 00 01 0							
Item	Model (in inches)	KSHJ10×15-01 (KSHJ10×15-01-F11) (KSHJ11×15-01-F11)	KSHJ10×15-03 (KSHJ10×15-03-F11) (KSHJ11×15-02-F11)	(KSHJ12×6-02 (KSHJ12×6-02-F11) (with hexagon socket)	KSHJ12×10-01 (KSHJ12×10-01-F11)	KSHJ12×10-02 (KSHJ12×10-02-F11)				
Maximum absorption capacity	J(in.lbs)	5 (44.3)	6.5 (57.6)	3 (26.6)	2 (17.7)	6 (5	(3.1)				
Absorption stroke	mm(in.)	15 (0	.591)	6 (0	236)	10 (0	.394)				
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)	0.1 to 1 (0	.33 to 3.28)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)				
Maximum operating cycle	cycle/min	g	0		6	60					
Maximum absorption capacity per unit of tir	me J/min (in.lbs/min)	200 (1	771.2)	80 (7	08.5)	220 (1	948.3)				
Spring return force ^{Note1}	Ν	9	.8	8	3	7	.6				
Deflection angle				1° or	less						
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3	2 to 140)						
	Model (in inches)	KSHJ12×15-01	KSHJ12×15-03	KSHJ14×8-01 (KSHJ14×8-01-F11)	KSHJ14×8-02 (KSHJ14×8-02-F11)	KSHJ14×12-01	KSHJ14×12-02				
Item		Rene 12 / 10-01	101012/(10-00	(with hexagon socket)	1		(KSHJ14×12-02-F11)				
Maximum absorption capacity	J(in.lbs)	7.5	9	5 (44.3)	3.25 (28.8)	10.0	88.6)				
Absorption stroke	mm(in.)		0.591)		.315)						
Impact speed range	. ,	0.1 to 1 (0.33 to 3.28)	,		.33 to 3.28)	12 (0.472) 0.1 to 1 (0.33 to 3.28) 0.1 to 2 (0.33 to					
Maximum operating cycle	cycle/min	, , ,	0.1 10 3 (0.33 10 9.04)		0 0	0.1 to 1 (0.33 to 3.28) 0.1 to 2 (0.33 to 60					
Maximum absorption capacity per unit of tir			062.7)		885.6)						
Spring return force ^{Note1}	N		9		2.5	240 (2125.4) 9.2					
Deflection angle	IN			1° or		9					
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3							
operating temperature range	U(F)			0 10 00 (3	2.0140)						

Note1: The spring return force is the force of the piston rod when it returns from a full stroke. It is not stable, so cannot be used as other than rod return.

2: The shock absorber's shock absorbing capacity fluctuates based on speed and ambient temperature.

(17) KOGRNEI Use the product within the ranges of the selection graphs (impact mass, impact speed diagram) on pages (4) to (6).

Specifications

M	odel (in inches)	KSHJ14×20-01		KSHJ16×8-01	KSHJ16×8-02		KSHJ16×15-02	
Item		K3HJ 14 × 20-01	K3HJ 14 A 20-03	(with hexagon socket)		K3HJ10 × 13-01	K3HJ 10 × 15-02	
Maximum absorption capacity	J(in.lbs)	12.5 (110.6)	2.5 (110.6) 15 (132.8) 7.5 (66.4) 5 (44.3)		15 (1	32.8)		
Absorption stroke	mm(in.)	20 (0	.787)	8 (0.315)		15 (0.591)		
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)	0.1 to 1 (0.33 to 3.28)		0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	
Maximum operating cycle	cycle/min	4	0	40				
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	140 (1	239.1)	130 (1	150.6)	280 (2478.2)		
Spring return force ^{Note1}	N	1	2	12	5	17.4		
Deflection angle		1° or	1° or less 3° or less			r less		
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3	2 to 140)			

Item	odel (in inches)	KSHJ16×20-01	KSHJ16×20-03	KSHJ18×16-01 (KSHJ18×16-01-F11)	KSHJ18×16-02 (KSHJ18×16-02-F11)	KSHJ18×30-01	KSHJ18×30-03
Maximum absorption capacity	J(in.lbs)	17.5 (154.9) 20 (177)		20 (177)	22 (194.7)	27 (239)
Absorption stroke	mm(in.)	20 (0.787)		16 (0	.630)	30 (1.181)	
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)
Maximum operating cycle	cycle/min	3	0	4	0	25	
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	160 (1	416.1)	320 (2	833.9)	200 (1771.2)	
Spring return force ^{Note1}	N	1	2	2	2	21	
Deflection angle		1° or less		3° or less		1° or less	
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3	2 to 140)		

Item	odel (in inches)	KSHJ20 × 10-01 (with hexagon socket)	KSHJ20 × 10-02 (with hexagon socket)	KSHJ20×16-01	KSHJ20×16-02	KSHJ20×30-01	KSHJ20×30-03
Maximum absorption capacity	J(in.lbs)	12.5 (110.6)	8 (70.8)	30 (2		40 (354)	45 (398.3)
Absorption stroke	mm(in.)	10 (0	.394)	16 (0	0.630)	30 (1	
Impact speed range	m/s(ft/s)	0.1 to 1 (0.	33 to 3.28)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)
Maximum operating cycle	cycle/min	4	.0	30		25	
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	200 (1	771.2)	450 (3982.8)		300 (2655.2)	
Spring return force ^{Note1}	N	1	5	22		21	
Deflection angle		3° o		r less		1° or less	
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3	32 to 140)	·	

M	odel (in inches)	KSHJ22 × 25-01	KSHJ22 × 25-02	KSHJ22 × 30-01	KSHJ22 × 30-03	KSHJ25 × 25-01
Item		K3HJ22 A 25-01	K3HJ22 A 25-02	K3HJ22 A 30-01	K3HJ22 \\$ 30-03	K3HJ25 A 25-01
Maximum absorption capacity	J(in.lbs)	50 (4	42.5)	40 (354)	45 (398.3)	60 (531.0)
Absorption stroke	mm(in.)	25 (0.984)		30 (1.181)		25 (0.984)
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)	0.1 to 1.5 (0.33 to 4.92)
Maximum operating cycle	cycle/min	3	0	25		30
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	500 (4	425.3)	300 (2655.2)		700 (6195.5)
Spring return force ^{Note1}	N	28	3.5	21		28.5
Deflection angle		3° or less		1° or less		3° or less
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (32 to -	140)	

Item	odel (in inches)		KSHJ25×25-12 (KSHJ25×25-02-F11)	KSHJ25×40-01,-11	KSHJ25×40-03,-13	KSHJ27×25-01,-11	KSHJ27×25-02,-12
Maximum absorption capacity	J(in.lbs)	60 (5	31.0)	70 (619.6)	90 (796.6)	60 (5	31.0)
Absorption stroke	mm(in.)	25 (0	.984)	40 (1	.575)	25 (0	.984)
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 1.5 (0.33 to 4.92)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)	0.1 to 1 (0.33 to 3.28)	0.1 to 1.5 (0.33 to 4.92)
Maximum operating cycle	cycle/min	3	0	2	0	3	0
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	800 (7	084.8)	400 (3	540.3)	800 (7	084.8)
Spring return force ^{Note1}	N	28	3.5	4	2	28	3.5
Deflection angle		3° or less		1° or less		3° or less	
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (32 to 140)			

Note1: The spring return force is the force of the piston rod when it returns from a full stroke. It is not stable, so cannot be used as other than rod return.

2: The shock absorber's shock absorbing capacity fluctuates based on speed and ambient temperature.

Use the product within the ranges of the selection graphs (impact mass, impact speed diagram) on pages (4) to (6).

KSHJ

KSHW

KSHC

Specifications

M	odel (in inches)		KEH 127 × 40 02 42	KSHJ30×30-01	KSHJ30×30-02	KSHJ30×30-03
Item		KSHJ27×40-01,-11	KSHJ27 × 40-03,-13	(KSHJ30×30-01-F11)	(KSHJ30×30-02-F11)	(KSHJ30×30-03-F11)
Maximum absorption capacity	J(in.lbs)	70 (619.6)	90 (796.6)		140 (1239.1)	
Absorption stroke	mm(in.)	40 (1	40 (1.575) 30		30 (1.181)	
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 3 (0.33 to 9.84)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 3 (0.33 to 9.84)
Maximum operating cycle	cycle/min			20		
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	400 (3	540.3)	900 (7965.7)		
Spring return force ^{Note1}	N	4	2	41.5		
Deflection angle		1° or less		3° or less		
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (32 to 140)		

Me	odel (in inches)	KSHJ33×30-01	KSHJ33×30-02	KSHJ33×30-03	KSHJ36×50-01	KSHJ36×50-02	KSHJ36×50-03
Item					(KSHJ36×50-01-F11)	(KSHJ36×50-02-F11)	(KSHJ36×50-03-F11)
Maximum absorption capacity	J(in.lbs)		140 (1239.1)			300 (2655.2)	
Absorption stroke	mm(in.)		30 (1.181)		50 (1.969)		
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 3 (0.33 to 9.84)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 3 (0.33 to 9.84)
Maximum operating cycle	cycle/min		20		20		
Maximum absorption capacity per unit of time	J/min (in.lbs/min)		900 (7965.7)		1800 (15931.3)		
Spring return force ^{Note1}	N		41.5		66.5		
Deflection angle		3° or less					
Operating temperature range ^{Note2}	°C(°F)			0 to 60 (3	32 to 140)		

М	odel (in inches)	KSHJ42×50-01	KSHJ42×50-02	KSHJ42×70-01	KSHJ42×70-02
Item		(KSHJ42×50-01-F11)	(KSHJ42×50-02-F11)	(KSHJ42×70-01-F11)	(KSHJ42×70-02-F11)
Maximum absorption capacity	J(in.lbs)	400 (3	540.3)	600 (5310.4)	
Absorption stroke	mm(in.)	50 (1.969)		70 (2.756)	
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)
Maximum operating cycle	cycle/min	1	5	15	
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	2400 (2	1254.4)	2400 (21254.4)	
Spring return force ^{Note1}	N	85	5.0	68.0	
Deflection angle		3° or less		1° or less	
Operating temperature range ^{Note2}	°C(°F)		0 to 60 (3	32 to 140)	

Me	odel (in inches)	KSHJ45 $ imes$ 50-01	KSHJ45 $ imes$ 50-02	KSHJ48 × 50-01	KSHJ48 × 50-02
Item		K011343 × 30-01	1011040 × 30-02	K011040 × 30-01	1011340 / 30-02
Maximum absorption capacity	J(in.lbs)	400 (3	540.3)	500 (4425.4)	
Absorption stroke	mm(in.)	50 (1.969)		50 (1.969)	
Impact speed range	m/s(ft/s)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)	0.1 to 1 (0.33 to 3.28)	0.1 to 2 (0.33 to 6.56)
Maximum operating cycle	cycle/min	1	5	15	
Maximum absorption capacity per unit of time	J/min (in.lbs/min)	2400 (2	1254.4)	3000 (2	26552.2)
Spring return force ^{Note1}	N	85	5.0	86	5.0
Deflection angle		3° or less			
Operating temperature range ^{Note2}	°C(°F)		0 to 60 (3	32 to 140)	

Note1: The spring return force is the force of the piston rod when it returns from a full stroke. It is not stable, so cannot be used as other than rod return.

2: The shock absorber's shock absorbing capacity fluctuates based on speed and ambient temperature.

Use the product within the ranges of the selection graphs (impact mass, impact speed diagram) on pages 4 to 6.

Specifications in mm

Madal		Main unit ^{Note}	Additional mass	/	Additional parts' mas	S
Model		Main unit	With plastic cap	Mounting nut (1 ea.)	Stopper nut	Side mounting bracke
(SHJ4×3-01, -02		1.8	0.1	0.2	1	7
(SHJ4×5-01, -02		1.9	0.1	0.2	1	7
SHJ6×4-01, -02		4	0.2	0.4	2	8
SHJ6×6-01, -02		5	0.2	0.4	2	8
SHJ8×4-01, -02, -11,-12	(with hexagon socket)	10	0.5	0.6(0.9) ^{Note2}	4	12
SHJ8×5-01, -11		10	0.5	0.6(0.9) ^{Note2}	4	12
SHJ8×8-01, -02, -11,-12		11.5	0.5	0.6(0.9) ^{Note2}	4	12
SHJ10×6-01, -02	(with hexagon socket)	21	0.6	1.2	7	15
SHJ10×10-01, -02		22	0.6	1.2	7	15
SHJ10×15-01, -03		28	0.6	1.2	7	15
SHJ12×6-01, 02	(with hexagon socket)	31	1.2	1.9	8	22
SHJ12×10-01, -02	- /	37	1.2	1.9	8	22
SHJ12×15-01, -03		38.5	1.5	1.9	8	22
SHJ14×8-01, 02	(with hexagon socket)	55	1.4	4	15	41
SHJ14×12-01, -02		58	1.4	4	15	41
SHJ14×20-01, -03		72	7.5	4	21	41
SHJ16×8-01, -02	(with hexagon socket)	73	1.4	6.6	28	65
SHJ16×15-01, -02		83	1.4	6.6	28	65
SHJ16×20-01, -03		95	7.5	6.6	28	65
SHJ18×16-01, -02		113	3.0	8.8	37	100
SHJ18×30-01, -03		152	7.5	8.8	37	100
SHJ20×10-01, -02	(with hexagon socket)	131	3.0	12.2	55	110
SHJ20×16-01, -02	, , ,	156	3.0	12.2	55	110
SHJ20×30-01, -03		192	7.5	12.2	55	110
SHJ22×25-01, -02		233	7.0	18.2	82	390
SHJ22×30-01, -03		253	7.5	18.2	82	390
SHJ25×25-01		307	7.0	23	95	360
SHJ25×40-01, -03		362	23.5	23	95	360
SHJ25×25-11, -12		300	7.0	24.5	95	360
SHJ25×40-11, -13		352	23.5	24.5	95	360
SHJ27×25-01, -02		415	7.0	42	180	460
SHJ27×40-01, -03		475	23.5	42	180	460
SHJ27×25-11, -12		395	7.0	54	180	460
SHJ27×40-11, -13		458	23.5	54	180	460
SHJ30×30-01, -02, -03		520	50	32.5	140	455
SHJ33×30-01, -02, -03		675	50	47.5	390	2800
SHJ36×50-01, -02, -03		1070	110	95.5	330	2650
SHJ42×50-01, -02		1310	110	93	320	2400
SHJ42×70-01, -02		1500	110	93	320	2400
SHJ45×50-01, -02		1610	110	123	420	3400
SHJ48×50-01, -02		1830	210	120	400	3400

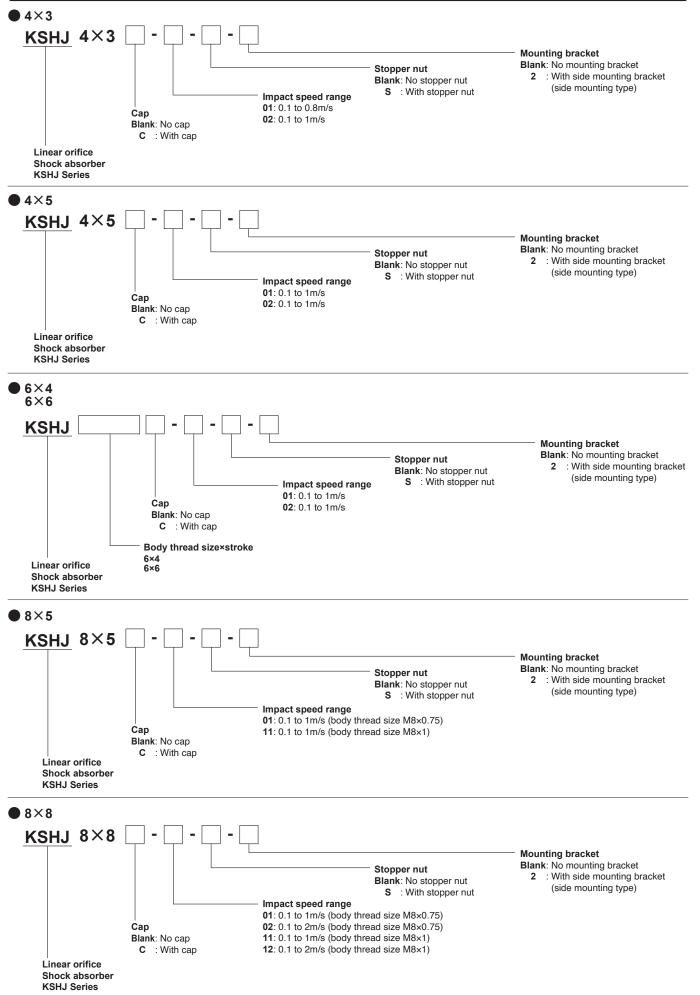
Calculation example: The mass of KSHJ10×10C-01-S-2 (with cap, stopper, and side mount) is

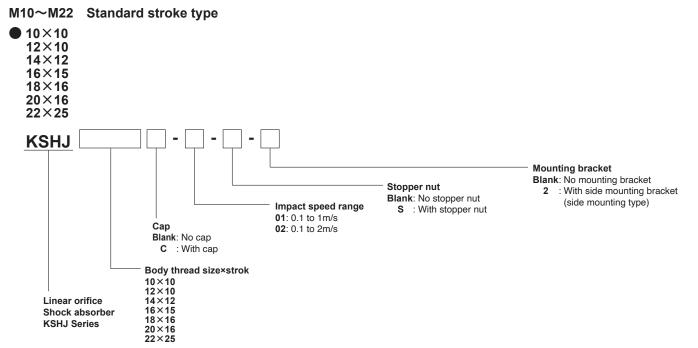
22 + 0.6 + 7 + 15 = 44.6g

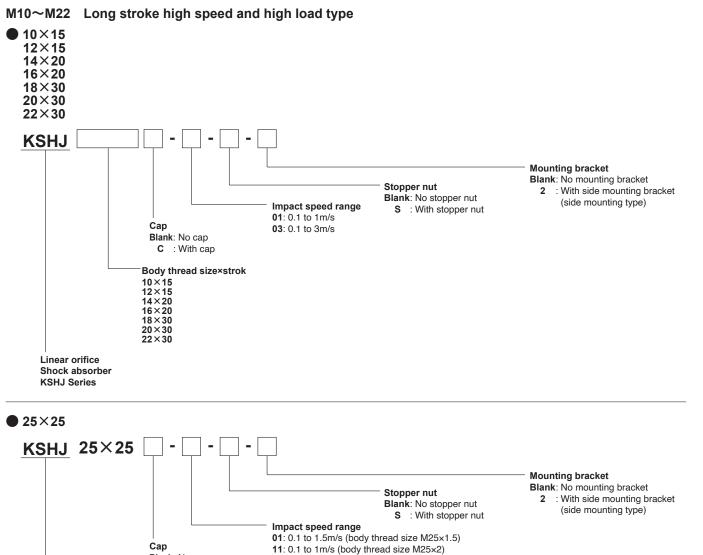
Note: The weight of the main unit includes the weight of 2 mounting nuts.

Specifications in inches

Mardal	Main unit ^{Note1}	Additional mass	Additional p	arts' mass
Model	Main unit	With plastic cap	Mounting nut (1 ea.)	Stopper nut
KSHJ4×3-01, -02 -F11	0.1	0.004	0.01	0.04
KSHJ6×4-01, -02 -F11	0.2	0.007	0.04	0.1
KSHJ6×6-01, -02 -F11	0.2	0.007	0.04	0.1
KSHJ8×4-01, -02, -11,-12 -F11	0.4	0.02	0.06	0.2
KSHJ8×5-01-F11	0.4	0.02	0.06	0.2
KSHJ8×8-01, -02, -11,-12 -F11	0.5	0.02	0.06	0.2
KSHJ10×6-01, -02 -F11	0.7	0.02	0.07	0.4
KSHJ10×10-01, -02 -F11	0.8	0.02	0.07	0.4
KSHJ10×15-01, -03 -F11	1.0	0.02	0.07	0.4
KSHJ11×6-01, -02 -F11 ^{Note2}	1.0	0.02	0.09	0.4
KSHJ11×10-01, -02-F11 ^{Note2}	1.2	0.02	0.09	0.4
KSHJ11×15-01, -03-F11 ^{Note2}	1.4	0.02	0.09	0.4
KSHJ12×6-01, 02-F11	1.3	0.04	0.1	0.5
KSHJ12×10-01, -02 -F11	1.5	0.04	0.1	0.5
KSHJ14×8-01, 02-F11	2.2	0.05	0.2	0.7
KSHJ14×12-01, -02 -F11	2.2	0.05	0.2	0.7
KSHJ18×16-01, -02 -F11	4.8	0.1	0.4	2.5
KSHJ25×25-11, -12 -F11	11.3	0.2	1.2	4.4
KSHJ30×30-01, -02, -03 -F11	20.6	1.8	1.3	5.5
KSHJ36×50-01, -02, -03 -F11	33.9	3.9	3.0	9.8
KSHJ42×50-01, -02 -F11	51.5	3.9	3.4	10.8
KSHJ42×70-01, -02 -F11	59.6	3.9	3.4	10.8


Calculation example: The mass of KSHJ10×10C-01-S-2 (with cap and stopper) is


Note1: The weight of the main unit includes the weight of 2 mounting nuts.


Note2: KSHJ11 has only inch specifications.

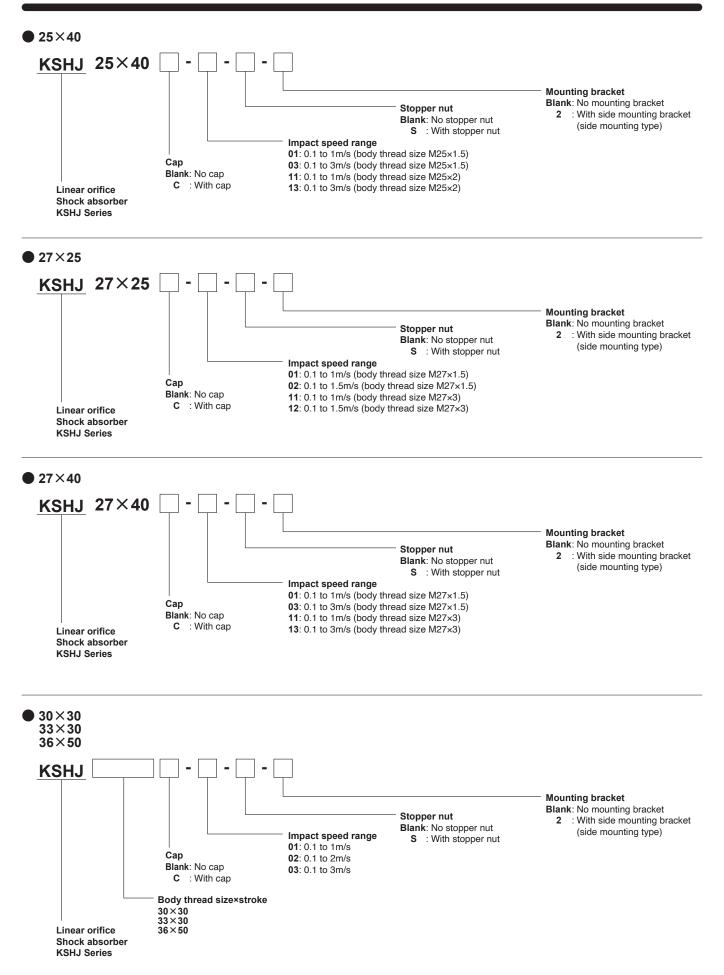
oz

Order Codes (specifications in mm)

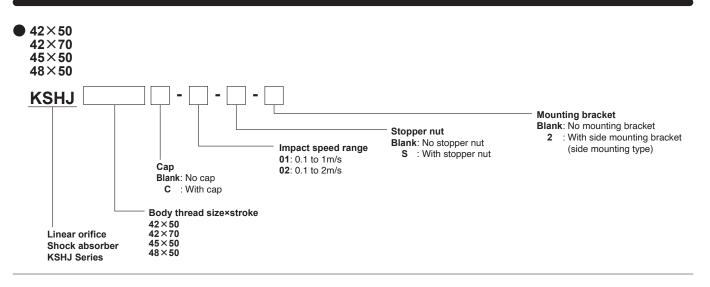
12: 0.1 to 1.5m/s (body thread size M25×2)

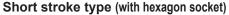
Blank: No cap

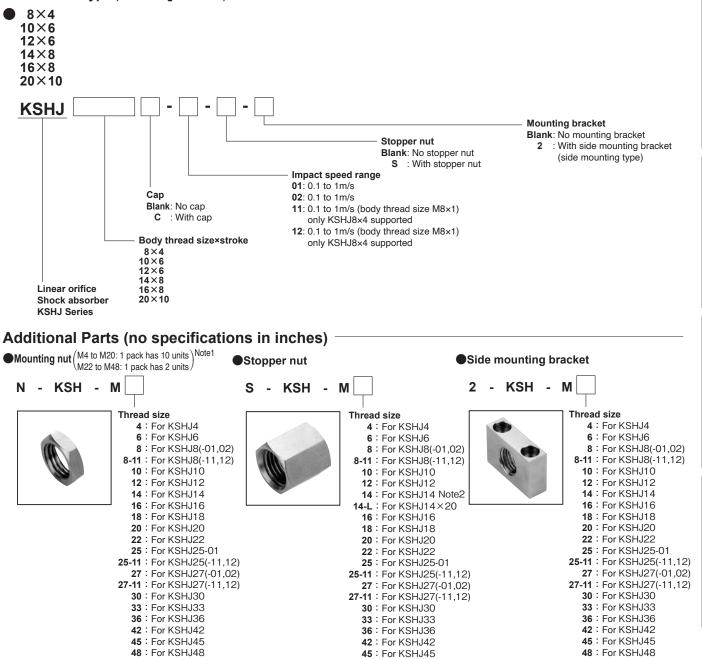
Linear orifice Shock absorber KSHJ Series C : With cap


KSHW

KSHJ


KSHY


KSHP


Order Codes (specifications in mm)

Order Codes (specifications in mm)

48 : For KSHJ48

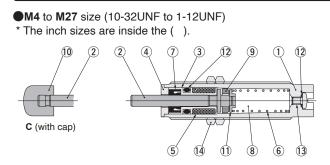
Note1 : The mounting nut for thread size M45 is nominal number AN09 prescribed in JIS B1554 (nuts for rolling bearings).

2: S-KSH-M14 cannot be used when installing a stopper nut to KSHJ14x20(_C_).Please use S-KSH-M14-L.

* For the dimension diagrams of the additional parts, see pages (8) to (8).

* The stopper nut and side mount are made from mild steel (nickel plated).

KSHW


KSHY

KSHP

KSHC

Additional parts

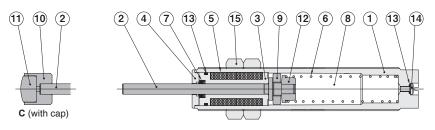
Inner Construction and Major Parts and Materials

Note: Some parts and interior shapes may vary depending on size.

No.	Name	Materials
1	Body ^{Note1}	Copper alloy (nickel plated)
2	Piston rod ^{Note2}	Steel (nickel plated)
3	Sleeve	Copper alloy
(4)	Plug	Stainless steel
(5)	Accumulator	Synthetic rubber
6	Spring	Spring steel
7	Rod seal	Synthetic rubber
8	Oil	Special oil
9	Piston ring ^{Note3}	Copper alloy
(10)	Сар	Plastic (POM)
(1)	Collar ^{Note4}	Stainless steel, copper alloy
(12)	O-ring	Synthetic rubber
(13)	Screw ^{Note5}	Mild steel (zinc plated)
(14)	Mounting nut	Mild steel (nickel plated)

Note1 : KSHJ4, 6, and 8×4 are stainless steel

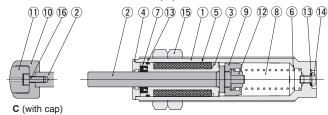
- KSHJ12×15 uses free-cutting steel
- 2 : KSHJ4×5, 8, 10×10, and 12×10 are stainless steel


3 : KSHJ12×15 are stainless steel

4 : KSHJ6 and 8 are copper alloy

KSHJ10 and 12, and 14x12 are sintered metal

5 : KSHJ4, 6, and 8 are nickel plated

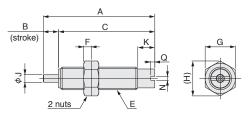

Note: Some parts and interior shapes may vary depending on size

No.	Name	Materials
1	Body	Free-cutting steel (nickel plated)
2	Piston rod	Stainless steel
3	Sleeve	Copper alloy
(4)	Plug	Stainless steel
(5)	Accumulator	Synthetic rubber
6	Spring	Spring steel
7	Rod seal	Synthetic rubber
8	Oil	Special oil
9	Piston ring	Stainless steel
(10)	Metal cap	Stainless steel
(1)	Сар	Plastic (POM)
(12)	Collar	Stainless steel
(13)	O-ring	Synthetic rubber
(14)	Screw ^{Note}	Mild steel (zinc plated)
(15)	Mounting nut	Mild steel (nickel plated)

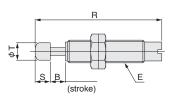
Note: KSHJ25x40, 27x40 are stainless steel

M30 to **M48** size (1 1/4-12UNF to 1 3/4-12UN)

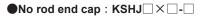
* The inch sizes are inside the ().

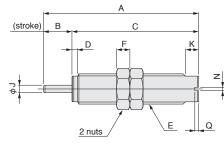


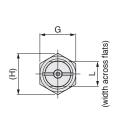
Note: Some parts and interior shapes may vary depending on size

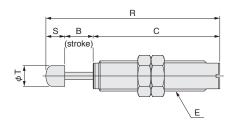

No.	Name	Materials
INO.	INaIIIe	IVIALEITAIS
1	Body	Free-cutting steel (nickel plated)
2	Piston rod	Steel (nickel plated)
3	Sleeve	Copper alloy
4	Plug	Stainless steel
5	Accumulator	Synthetic rubber
6	Spring	Spring steel
7	Rod seal	Synthetic rubber
8	Oil	Special oil
9	Piston ring ^{Note}	Copper alloy
(10)	Metal cap	Stainless steel
11	Сар	Plastic (POM)
(12)	Collar	Stainless steel
(13)	O-ring	Synthetic rubber
(14)	Button head screw	Stainless steel
(15)	Mounting nut	Mild steel (nickel plated)
(16)	Hexagon socket head screw	Mild steel (nickel plated)

Note: KSHJ42, 45, and 48 are stainless steel


$\blacksquare No rod end cap : KSHJ4 \times 3, KSHJ4 \times 5, KSHJ6 \times 4, KSHJ6 \times 6$

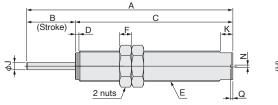



$\textcircled{\label{eq:With} With rod end cap}: KSHJ4 <math display="inline">\times$ 3C, KSHJ4 \times 5C KSHJ6 \times 4C, KSHJ6 \times 6C

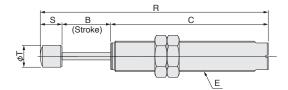

Model	Α	В	С	E	F	G	Н	J	К	N	Q	R	S	Т
KSHJ4×3(C)-01,-02	25	3	22	M4×0.5	2	5.5	6.4	1.2	3	1	1.1	28.5	3.5	3.2
KSHJ4×5(C)-01,-02	32	5	27	M4×0.5	2	5.5	6.4	1.2	3	1	1.1	35.5	3.5	3.2
KSHJ6×4(C)-01,-02	29.5	4	25.5	M6×0.75	2	8	9.2	2	4.5	1	1	33.5	4	4.6
KSHJ6×6(C)-01,-02	35.5	6	29.5	M6×0.75	2	8	9.2	2	5.5	1	1	39.5	4	4.6

• With rod end cap : KSHJ \supseteq × \Box C - \Box

Model	Α	В	С	D	E	F	G	Н	J	к	L	Ν	Q	R	S	Т
KSHJ8×5(C)-01	37	5	32	1.2	M8×0.75	2	10	11.5	2.5	3	7	1.3	1.5	42	5	6.5
KSHJ8×5(C)-11	37	5	32	1.2	M8×1	3	10	11.5	2.5	3	7	1.3	1.5	42	5	6.5
KSHJ8×8(C)-01,-02	46	8	38	1.2	M8×0.75	2	10	11.5	2.5	3	7	1.3	1.5	51	5	6.5
KSHJ8×8(C)-11,-12	46	8	38	1.2	M8×1	3	10	11.5	2.5	3	7	1.3	1.5	51	5	6.5
KSHJ10×10(C)-01,-02	60	10	50	2	M10×1	3	12	13.9	3	5	8.5	1.3	1.5	68	8	8
KSHJ10×15(C)-01,-03	77	15	62	2.3	M10×1	3	12	13.9	3	5	8.5	1.3	1.5	85	8	8
KSHJ12×10(C)-01,-02	66	10	56	2	M12×1	4	14	16.2	3	5	10.5	1.3	1.5	76	10	10
KSHJ12×15(C)-01,-03	77	15	62	2	M12×1	4	14	16.2	3	5	10.5	1.3	1.5	87	10	10
KSHJ14×12(C)-01,-02	72	12	60	2	M14×1.5	5	17	19.6	4	5	12	1.3	1.5	82	10	11
KSHJ16×15(C)-01,-02	82	15	67	3	M16×1.5	7	19	21.9	4	7	13	1.8	2	92	10	11
KSHJ18×16(C)-01,-02	88	16	72	3	M18×1.5	8	21	24.2	5	7	15	1.8	2	103	15	15
KSHJ20×16(C)-01,-02	93	16	77	3	M20×1.5	8	24	27.7	5	7	17	1.8	2	108	15	15
KSHJ22×25(C)-01,-02	125	25	100	3	M22×1.5	9	27	31.2	6	10	19	1.8	2	143	18	18
KSHJ25×25(C)-01	125	25	100	3	M25×1.5	10	30	34.6	6	10	22	1.8	2	143	18	18
KSHJ25×25(C)-11,-12	125	25	100	3	M25×2	10	30	34.6	6	10	22	1.8	2	143	18	18

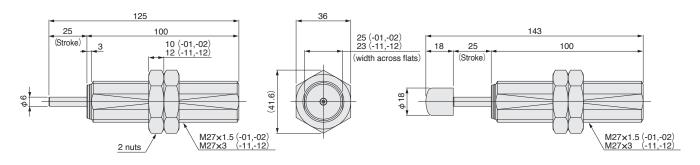

KSHP

KSHW

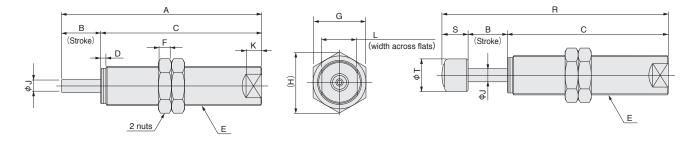

KSHY

$\blacksquare No \ rod \ end \ cap : KSHJ \square \times \square - \square$

•With rod end cap : KSHJ \rightarrow C-


(H)	G	<mark>L_</mark> (width across flats)
Ļ		(width

Model Symbol	Α	В	С	D	E	F	G	Н	J	К	L	N	Q	R	S	Т
KSHJ14×20(C)-01,-03	103	20	83	1.8	M14×1.5	5	17	19.6	4	5	12	1.3	1.5	116	13	12
KSHJ16×20(C)-01,-03	103	20	83	3	M16×1.5	7	19	21.9	4	7	13	1.8	2	116	13	12
KSHJ18×30(C)-01,-03	137	30	107	3	M18×1.5	8	21	24.2	5	7	15	1.8	2	150	13	12
KSHJ20×30(C)-01,-03	137	30	107	3	M20×1.5	8	24	27.7	5	7	17	1.8	2	150	13	12
KSHJ22×30(C)-01,-03	137	30	107	3	M22×1.5	9	27	31.2	5	10	19	1.8	2	150	13	12
KSHJ25×40(C)-01,-03	170	40	130	3	M25×1.5	10	30	34.6	6	10	22	1.8	2	188	18	18
KSHJ25×40(C)-11,-13	170	40	130	3	M25×2	10	30	34.6	6	10	22	1.8	2	188	18	18
KSHJ27×40(C)-01,-03	170	40	130	3	M27×1.5	10	36	41.6	6	10	22	1.8	2	188	18	18
KSHJ27×40(C)-11,-13	170	40	130	3	M27×3	12	36	41.6	6	10	22	1.8	2	188	18	18

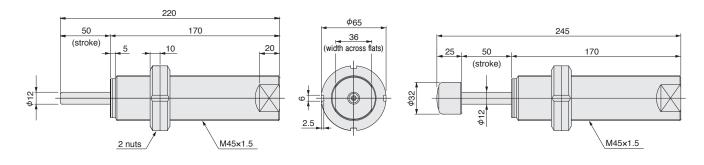

• No rod end cap : KSHJ27 \times 25-

•With rod end cap : KSHJ27 \times 25C-

•No rod end cap : $KSHJ \supseteq \times \Box - \Box$

•With rod end cap : KSHJ \simeq \times \Box C- \Box

Model Symbol	Α	В	С	D	E	F	G	Н	J	к	L	R	S	Т
KSHJ 30 × 30 (C) -01, -02,-03	153	30	123	4	M30×1.5	10	36	41.6	10	12	24	173	20	25
KSHJ 33 × 30 (C) -01, -02,-03	153	30	123	4	M33×1.5	10	41	47.3	10	12	27	173	20	25
KSHJ 36 × 50 (C) -01, -02,-03	218	50	168	5	M36×1.5	15	46	53.1	12	15	30	243	25	32
KSHJ 42 × 50 (C) -01, -02	220	50	170	5	M42×1.5	15	50	57.7	12	20	36	245	25	32
KSHJ 42 × 70 (C) -01, -02	275	70	205	5	M42×1.5	15	50	57.7	12	20	36	300	25	32
KSHJ 48 × 50 (C) -01, -02	230	50	180	6	M48×2	15	55	63.5	14	20	40	263	33	38


Dimensions (mm)

KSHJ16×8(C)-01,-02

KSHJ20×10(C)-01,-02

No rod end cap: KSHJ45×50-01, -02

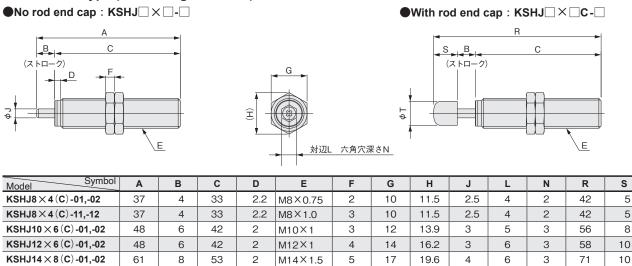
•With rod end cap: KSHJ45×50C-01, -02

Short stroke type (with hexagon socket)

8

10

61


69

53

59

3

3

M16×1.5

M20×1.5

7

8

19

24

21.9

27.7

4

5

4

4

6

6

71

84

KSHP

Т

6.5

8

10

11

11

15

6.5

5

5

8

10

15

KSHY

KSHJ

KSHW

Linear Orifice[®] Protective shock absorbers KSHW Series

KSHJ

KSHW

Linear Orifice[®] Protective shock absorbers KSHW series

* "Linear Orifice" is a registered trademark of Koganei Corporation.

Solve problems by absorbing impact in harsh environments, such as cutting oil, wet, or dusty conditions!

Machining Processes Cutting oil countermeasures: Fluorine packing Machining chip countermeasures: Equipped with filter

Food processing machinery Sanitary countermeasures: H1 oil specifications Rust-proofing countermeasures: Stainless steel specifications Dust countermeasures: Equipped with filter

Wide range of variations. M8 to M20 6 sizes in 14 models

CAUTION Read the safety precautions on page (5) before using this product.

General precautions

- The product is specified as dust-proof and drip-proof, however, the usage environment and conditions affect its service life. The expected durability may not be achieved, depending on the type and amount of dust and liquid to which the shock absorber is subjected. We recommend doing confirmation tests in advance.
- Handle the shock absorbers so they are not scratched or dented. The drip-proof and dust-proof performance is reduced if the piston rod is scratched. Also, installing and removing the shock absorbers becomes more difficult if the body threads are scratched.
- **3.** Shock absorbers have reached the end of their service life if the piston rod can no longer be pushed to the stroke end while in use. Stop using the shock absorber and replace it. Continuing to use a shock absorber while it cannot absorb shocks could damage it, as well as damage the base equipment itself.

- Keep the angle of eccentricity, resulting from the load direction and the axis of the shock absorber, under the specified values on pages 3. If an eccentric load exceeding the specifications is applied, it could result in breakage or impaired returns. If there is concern that an eccentric load exceeding the specified values will be applied, install a guide, or similar mechanism.
- 2. Two or more shock absorbers can be mounted in parallel, to boost absorption capacity. In such an arrangement, however, be careful to ensure that the load is evenly distributed to each shock absorber.
- **3.** To adjust the capacity with the stroke, adjust the stopper nut (-S) or add an external stopper.
- 4. The small screw on the back end of the shock absorber should never be loosened or removed. Oil may leak out of the shock absorber leading to a loss of functionality and resulting in damage to the equipment and accidents.
- 5. When mounting the shock absorber, always use the following maximum tightening torque guidelines. Tightening using excessive force may result in damage.

	N•m [ft•lbf]
Model	Maximum tightening torque
KSHW8×5-01,-02,-11,-12	2.5 [1.844]
KSHW10×6-01,02	6.5 [4.794]
KSHW12×6-01,02	8.0 [5.901]
KSHW14×8-01,02	12.0 [8.851]
KSHW16×8-01,02	20.0 [14.752]
KSHW20×10-01,02	30.0 [22.128]

6. Ensure that the hardness of the surface directly impacting the piston rod of the shock absorber is over HRc40 hardness.

7. Be aware that performance and characteristics change depending on the operating temperature.

KSHJ

How to select shock absorbers

1. Confirm the thrust

Confirm the thrust to be used, and then check for prospective shock absorbers according to the recommended cylinder diameter chart on page 3. If you use a shock absorber that is smaller than the recommended size, you many not get the expected operation cycles.

2. Confirm the kinetic energy

Confirm I and II below, and then check pages $\textcircled{3}{5}$ for the selection graphs for prospective shock absorbers from [1. Confirm the thrust]. (*)

I Impact object mass: m [kg [lb]]

II Impact speed: v [m/s [ft/sec]]

Because " ${\bf v}$ " is the impact speed, not the average speed, when using a cylinder,

v = m [cylinder stroke] \div s [operating time] $\times 2$

Select a model in which ${\rm I}$ and ${\rm I\hspace{-.1em}I}$ fit within the range enclosed by the capacity curves.

If multiple models are applicable, use the model that is closest to both the capacity curves and the operating conditions. The further the model you select is from the capacity curves and the operating conditions, the slower it will tend to be.

3. Confirm other specifications

Confirm that such specifications as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range are within the range for the shock absorber that you selected.

* The value for the kinetic energy, E, can be found by doing the following calculation. However, the shock absorber's capacity for absorption changes depending on the impact speed. When the shock absorber is doing low-speed operations, it has less drag than when it is doing high-speed operations.

<u>The maximum absorption capacity that is noted in the</u> <u>specifications is reached only at the maximum impact speed.</u> Therefore, do not choose a shock absorber by comparing E to the maximum absorption capacity; confirm the capacity using the selection graph.

 $E=\frac{1}{2}mv^2$

E: Kinetic energy (J [ft · lbf]) m: Impact object mass [kg [lb]]

v: Impact speed (m/s [ft/sec])

Range in the selection graph

Vertical axis range : Maximum impact speed ≧ ^v Impac (operation)	t speed ng condition)
Horizontal axis range : Shock absorber's maximum absorption capacity at ≧ the impact speed (v = m/s [ft/sec])	E Kinetic energy (operating condition)

Calculating the thrust energy is not necessary because the size of the shock absorber is limited by the thrust in step 1.

Example of selecting a shock absorber [Operating conditions]

(1) Bore size of the cylinder being used: ϕ 16 [0.630]

②Cylinder stroke: 100 mm [3.9 in.] = 0.1 m [0.328 ft]
 ③Pressure applied to the cylinder: 0.6 MPa [87 psi]

Pressure applied to the cylinder: 0.6 MPa [8
 Cylinder's operating time: 0.4 s

(a) Cylinder's operating time: 0.4 s
 (b) Impact object mass: 7 kg [15.432 lb]

1. Confirm the thrust

Either calculate or find the thrust in the cylinder thrust table on page 39.

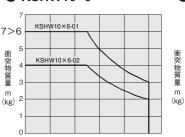
The cylinder thrust based on ① and ③ is about 121 N.

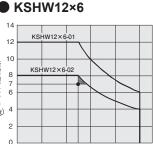
,			-			
Cylinder thrust	100.5 N [22.6 lbf]		120.6 N [27.1 lbf]		126 N [28.3 lbf]	
Cylinder bore size	φ16 [0.630]	<	φ16 [0.630]	<	φ20 [0.787]	
Applied pressure	0.5 MPa [73		0.6 MPa [87		0.4 MPa [58	
hipping pressure	psi]		psi]		psi]	

As mentioned above, although the cylinder being used is ϕ 16 [0.630], the pressure applied to the cylinder exceeds 0.5 MPa [73 psi], so consider the ϕ 20 [0.787] cylinder (lower than 0.4 MPa [58 psi]) and check the table of recommended cylinder bore sizes on page \Im . The following are prospective models.

• KSHW10x6 • KSHW12x6 • KSHW14x8

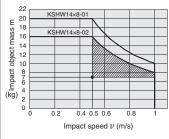
• KSHW16×8


2. Confirm the kinetic energy


- $\rm I$ The impact object mass m = 7 kg [15.432 lb] from $\rm (5)$
- ${\rm I\!I}\,$ Find the impact speed, v, from 2 and 4 .

= 0.5 m/s [1.640 ft/sec]

According to the selection graphs on pages 35, the shock absorber with the optimum absorption capacity for operating conditions is KSHJ12×6-02.


KSHW10×6

1 kg = 35.274 oz 1 m/s = 3.280 ft/sec

KSHW14×8

- KSHW10×6 ... Inadequate absorption capacity
- KSHW12×6-01 ... KSHW12×6-02 is closer to the usage conditions and capacity curves.
- The absorption capacities for all of the other shock absorbers are higher than that of KSHW12×6-02, so they do not fall within the operating conditions and capacity curves.

3. Confirm other specifications

Verify that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range, are within the specified ranges for KSHW12×6-02.

Selection Guideline

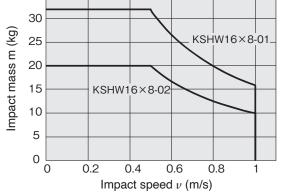
Recommended cylinder bores

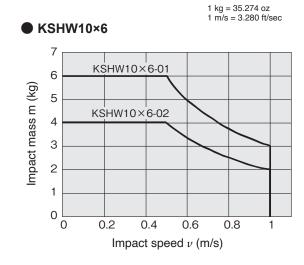
Cylinder bore size Model	φ8 [0.315]	φ 10 [0.394]	φ12 [0.472]	φ16 [0.630]	φ20 [0.787]	φ25 [0.984]	φ32 [1.260]	φ40 [1.575]	φ50 [1.969]
KSHW8×5	\diamond	0	0	0					
KSHW10×6		\diamond	0	0	0				
KSHW12×6			\diamond	0	0	0			
KSHW14×8				\diamond	0	0	0		
KSHW16×8					\diamond	0	0	0	
KSHW20×10						\diamond	0	0	0

Note: If you use a shock absorber that is smaller than the recommended size, it could be damaged and get fewer than the guaranteed operation cycles.

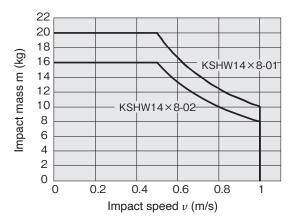
Cylinder thrust

Cylinder bore size	Pressure area		Air pressure MPa [psi]											
Cylinder bore size	mm² [in²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]				
φ 8 [0.315]	50.3 [0.078]	5	10.1	15.1	20.1	25.1	30.2	35.2	40.2	45.2				
φ 10 [0.394]	78.5 [0.122]	7.9	15.7	23.6	31.4	39.3	47.1	55	62.8	70.7				
φ 12 [0.472]	113 [0.2]	11.3	22.6	33.9	45.2	56.5	67.9	79.2	90.5	101.8				
φ 16 [0.630]	201 [0.3]	20.1	40.2	60.3	80.4	100.5	121	141	161	181				
φ 20 [0.787]	314 [0.5]	31.4	62.8	94.2	126	157	188	220	251	283				
φ 25 [0.984]	491 [0.8]	49.1	98.2	147	196	245	295	344	393	442				
φ 32 [1.260]	804 [1.2]	80.4	161	241	322	402	483	563	643	724				
φ 40 [1.575]	1257 [2]	126	251	377	503	628	754	880	1005	1131				
φ 50 [1.969]	1963 [3]	196	393	589	785	982	1178	1374	1571	1767				

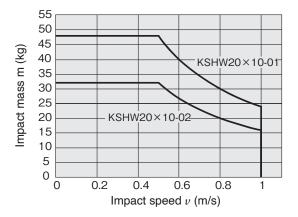

Selection Guideline


Selection graph

Precautions when using the selection graph


- 1. Selection graph data is calculated with 0.5 MPa [73 psi] for the air pressure used in cylinders.
- 2. The values on the selection graphs are for room temperature (20 to 25°C [68 to 77°F]). Be aware that performance and characteristics change depending on the operating temperature.
- 3. Select a shock absorber that is under and near the capacity curve.

KSHW8×5 5 KSHW8×5-01,11 4 Impact mass m (kg) KSHW8×5-02,12 3 2 1 0 0 0.4 0.6 0.2 0.8 1 Impact speed v (m/s) KSHW12×6 14 12 Impact mass m (kg) 10 KSHW12×6-01-8 6 KSHW12×6-02 4 2 0 0 0.2 0.4 0.6 0.8 1 Impact speed v (m/s) KSHW16×8 35



KSHW20×10

Linear Orifice Protective Shock Absorbers

KSHW series

Specifications

Item	KSHW8×5-01,-11	KSHW8×5-02,12	KSHW10×6-01	KSHW10×6-02		
Maximum absorption capacity J [ft•lbf]	1 [0.738]	0.8 [0.590]	1.5 [1.106]	1 [0.738]		
Absorption stroke mm [in.]	5 [0.	197]	6 [0.236]			
Impact speed range m/s [ft/sec]		0.1 to 1.0 [0.328 to 3.280]				
Maximum operating frequency cycle/min	60					
Maximum absorption per unit of time J/min	2	0	30			
Spring return force ^{Note 1} N [lbf]	9 [2.	023]	11 [2.473]			
Deflection angle	1° or less					
Operating temperature range ^{Note 2} °C [°F]	0 to 60 [32 to 140]					

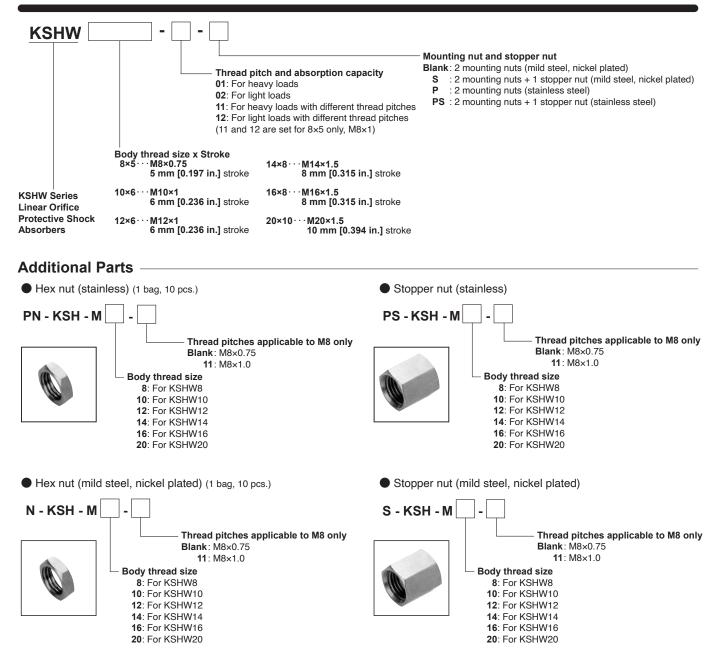
Item	KSHW12×6-01	KSHW12×6-02	KSHW14 _× 8-01	KSHW14 _× 8-02		
Maximum absorption capacity J [ft•lbf]	3 [2.213] 2 [1.475]		5 [3.688]	4 [2.950]		
Absorption stroke mm [in.]	6 [0.	236]	8 [0.315]			
Impact speed range m/s [ft/sec]		0.1 to 1.0 [0.328 to 3.280]				
Maximum operating frequency cycle/min	60					
Maximum absorption per unit of time J/min	4	5	60			
Spring return force ^{Note 1} N [lbf]	10 [2	10 [2.248] 13 [2.				
Deflection angle	1° or less					
Operating temperature range ^{Note 2} °C [°F]	0 to 60 [32 to 140]					

Item	KSHW16×8-01	KSHW16×8-02	KSHW20×10-01	KSHW20×10-02		
Maximum absorption capacity J [ft•lbf]	8 [5.901]	8 [5.901] 5 [3.688]		8 [5.901]		
Absorption stroke mm [in.]	8 [0.	.315]	10 [0.394]			
Impact speed range m/s [ft/sec]		0.1 to 1.0 [0.328 to 3.280]				
Maximum operating frequency cycle/min	40					
Maximum absorption per unit of time J/min	8	80	120			
Spring return force ^{Note 1} N [lbf]	13 [2	2.923]	21.5 [4.833]			
Deflection angle	1° or less					
Operating temperature range ^{Note 2} °C [°F]	0 to 60 [32 to 140]					

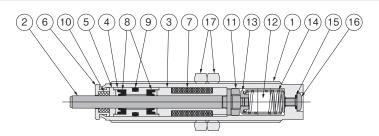
Note 1: The spring return force is the force of the piston rod returning after a full stroke, it is not consistent so cannot be used as a function.

2: The absorption capacity of shock absorbers increases and decreases depending on speed and ambient temperature. Always use one that is within the range shown by the capacity curve on the selection graphs on page 35.

Mass


					g [oz]			
		Weight of additional parts						
Model	Body ^{Note 1}	Mounting nu	t (per piece)	Stopper nut				
		Mild steel, nickel plated	Stainless steel	Mild steel, nickel plated	Stainless steel			
KSHW8×5-01,-02,-11,-12	10 [0.353]	0.6 [0.021] (0.9 [0.032]) ^{Note 2}	0.6 [0.021] (0.9 [0.032])	4 [0.141]	4 [0.141]			
KSHW10×6-0102	21 [0.741]	1.2 [0.042]	1.2 [0.042]	7 [0.247]	7 [0.247]			
KSHW12×6-01,-02	34 [1.199]	1.9 [0.067]	1.9 [0.067]	8 [0.282]	9 [0.317]			
KSHW14×8-01,-02	52 [1.834]	4 [0.141]	4.5 [0.159]	15 [0.529]	16 [0.564]			
KSHW16×8-01,-02	68 [2.399]	6.6 [0.233]	7.5 [0.265]	28 [0.988]	31 [1.093]			
KSHW20×10-01,-02	139 [4.9]	12.2 [0.430]	13 [0.459]	55 [1.940]	57 [2.011]			

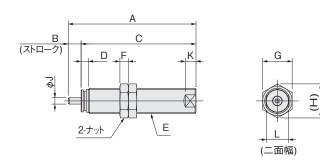
Calculation example: The weight of the KSHW10x6-01-PS (with stainless steel mounting nut and stainless steel stopper nut) is $21 [0.741] + 1.2 [0.042] \times 2 + 7 [0.247] = 30.4 g [1.072 oz].$


Note 1: Body weight is the weight of the shock absorber only. The mounting nut weight is not included.

2: (0.9 [0.032]) is the weight of the mounting nut for the KSHW8×5-11 and -12.

Order Codes

*For the dimension diagrams of the additional parts, see pages (8) to (82).



No.	Name	Material
1	Unit	Stainless steel
2	Piston rod	Special steel
3	Sleeve	Copper alloy
4	Seal	Copper alloy
(5)	Bearing	Copper alloy
6	Plug	Stainless steel
7	Accumulator	Fluoro rubber
8	Rod packing	Fluoro rubber

No.	Name	Material
9	O-ring	Fluoro rubber
10	Filter	Resin
11	Piston ring	Stainless steel
(12)	Oil	Special oil
(13)	Collar ^{Note 1}	Stainless steel
(14)	Spring	Spring steel
(15)	O-ring	Fluoro rubber
(16)	Screw	Mild steel (zinc plated)
17	Mounting nut ^{Note 2}	Mild steel (nickel plated) or stainless steel

Note 1: KSHW8 is copper alloy, KSHW10 and 12 are sintered metal Note 2: The material can be selected.

Dimensions (mm [in.])

Model Symbol	Α	В	С	D	E	F	G	Н	J	К	L
KSHW8X5(C)-01,-02	44 [1.732]	5 [0.197]	39 [1.535]	3.5 [0.138]	M8×0.75	2 [0.079]	10 [0.394]	11.5 [0.453]	2.5 [0.098]	3 [0.118]	7 [0.276]
KSHW8X5(C)-11,-12	44 [1.732]	5 [0.197]	39 [1.535]	3.5 [0.138]	M8×1	3 [0.118]	10 [0.394]	11.5 [0.453]	2.5 [0.098]	3 [0.118]	7 [0.276]
KSHW10X6(C)-01,-02	56.5 [2.224]	6 [0.236]	50.5 [1.988]	3.5 [0.138]	M10×1	3 [0.118]	12 [0.472]	13.9 [0.547]	3 [0.118]	5 [0.197]	8.5 [0.335]
KSHW12X6(C)-01,-02	60.5 [2.382]	6 [0.236]	54.5 [2.146]	3.5 [0.138]	M12×1	4 (3) ^{Note} [0.157(0.118)]	14 [0.551]	16.2 [0.638]	3 [0.118]	5 [0.197]	10.5 [0.413]
KSHW14X8(C)-01,-02	70 [2.756]	8 [0.315]	62 [2.441]	4 [0.157]	M14×1.5	5 [0.197]	17 [0.669]	19.6 [0.772]	4 [0.157]	5 [0.197]	12 [0.472]
KSHW16X8(C)-01,-02	70 [2.756]	8 [0.315]	62 [2.441]	4 [0.157]	M16×1.5	7 [0.276]	19 [0.748]	21.9 [0.862]	4 [0.157]	7 [0.276]	13 [0.512]
KSHW20X10(C)-01,-02	86 [3.386]	10 [0.394]	76 [2.992]	4 [0.157]	M20×1.5	8 [0.315]	24 [0.945]	27.7 [1.091]	5 [0.197]	7 [0.276]	17 [0.669]

Note: Values in () are dimensions of stainless steel mounting nut.

KSHC

The product is specified as dust-proof and drip-proof, however, the usage environment and conditions affect its service life.

At Koganei, we have confirmed 1,000,000 operation cycles using the durability test described below.

The expected durability may not be achieved,

depending on the type and amount of dust and liquid to which the shock absorber is subjected.

We recommend doing confirmation tests in advance.

Testing procedure

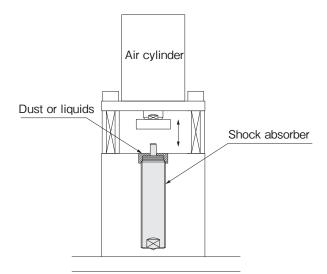
As shown in the diagram on the right, a space was formed on the stroke end of the shock absorber to collect liquid or dust.

We confirmed that the damage or abnormalities listed below did not occur.

- Oil leakage
- Piston rod return failure
- Piston rod stroke abnormality (Stroke not reaching end)
- · Loose plug or ejection of internal parts
- Extreme reduction in stroke due to occurrence of drag

• Testing conditions

Operating frequency: 30 cycle/min


Types of liquid and dust

- ① Tap water
- 2 Water-based cutting fluid: Daphne Alpha Cool EW

(30x dilution)

- ③ Turbine oil: Mobile DTE Oil Light
- ④ Dust: JIS Test Powder 1 (1 type)

Overview of test equipment for drip-proof and dust-proof performance

Side load resistant Linear Orifice[®] Shock Absorber KSHY Series

Side load resistant Linear Orifice[®] Shock Absorber

Can be used without an adaptor to handle rotary side load! Stopper unnecessary

Each size can withstand up to 10° Maximum of more than 2 million operation cycles!

> Wide range of variations M6 to M20 7 sizes 132 models

KSHJ

KSHW

KSHY

The KSHY series eliminates concerns about absorbing shocks from rotating loads!

Side load resistant Linear Orifice®

Shock Absorber NEW KSHY Series

* "Linear Orifice" is a registered trademark of Koganei Corporation. * Specifications in inches are not available.

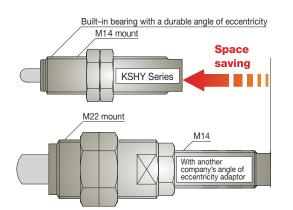
> Spherically machined

New release of our linear orifice models for shock absorbers with side load resistant!

This shock absorber lineup consists of 7 thread sizes from M6 to M20

Maximum of more than 2 million operation cycles!

The unique linear orifice structure, which is used in many applications, provides a long service life


Cap can also be selected as an option

Compliant with H1 grade food equipment specifications!

Uses NSF H1 grade oil (non silicon).

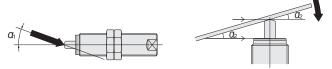
Contributes to space saving!

Integrated a main unit and a side load bearing. Can be used without an adaptor to handle rotary side load!

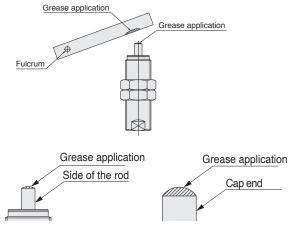
Since you do not need an adaptor, you can also save space with the mounting unit (screw hole)!

* Illustration

CAUTION Read the safety precautions on page (5) before using this product.

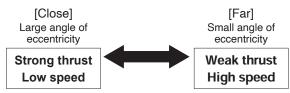

General precautions

Cover the unit when mounting it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc. Dents, scratches, water, oil, or dust on the piston rod results in damage and decreases service life.



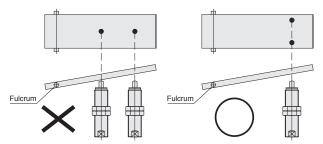
Mounting

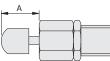
 Keep the angle of eccentricity, resulting from the load direction and the axis of the shock absorber, under the specified values on page ⁽⁵⁾. If an eccentric load exceeding the specifications is applied, it could result in breakage or impaired returns. If there is concern that an eccentric load exceeding the specified values will be applied, install a guide, or similar mechanism.



2. For swing impacts, the ends of the piston rod and the cap wear down due to the sliding between the contact area and the tip of the shock absorber. Although you can reduce wear by applying grease, observe the following precautions when applying grease.

- * Grease application: Apply a small amount and spread it thinly.
- * Wipe off the grease if it gets stuck to the cap end or the side of the rod.
- * If grease gets inside the body of the shock absorber and excessively increases its inner volume, the pressure inside the shock absorber will rise when absorbing an impact and cause damage due to the plug popping out, or other similar situations. Make sure not to apply grease excessively.
- **3.** Ensure that the hardness of the surface directly impacting the piston rod of the shock absorber is over HRc40 hardness (excluding models with cap). We also recommend a surface roughness of Ry6.3 or less.

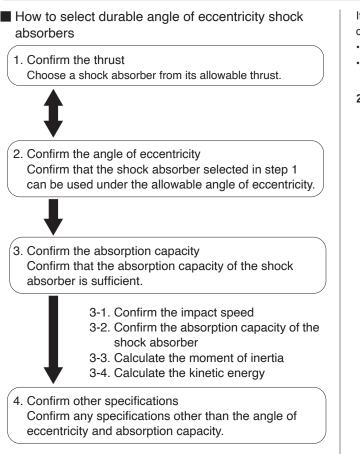

4. Angle of eccentricity specification shock absorbers can be used very effectively if they are mounted at a position far from the center of rotation. However, use shock absorbers with a thrust stronger than the returning force of the spring (return force of the piston rod).


Large shock absorber

Small shock absorber

5. Two or more shock absorbers can be mounted in parallel, to boost absorption capacity. However, keep the distances from the center of rotation to each shock absorber equal. Also, have the load applied evenly between each shock absorber.

- **6.** To adjust the capacity with the stroke, adjust the stopper nut (-S) or add an external stopper.
- 7. If using with a cap, always mount a stopper nut (-S) or an external stopper to ensure that the cap is not subjected to loads at the stroke end. Install the mounting position of the stopper nut such that A ≤ the stroke of the shock absorber. You can use it without a stopper nut or external stopper, but over the long-term, the stop location changes due to cap deformation and wear.



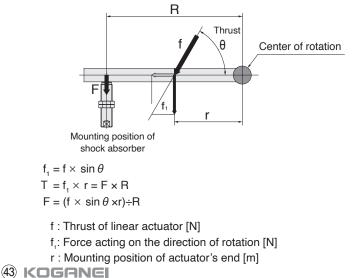
- The small screw on the back end of the shock absorber should never be loosened or removed. Oil may leak out of the shock absorber leading to a loss of functionality and resulting in damage to the equipment and accidents.
- **9.** When mounting the shock absorber, always use the following maximum tightening torque guidelines. Tightening using excessive force may result in damage.

Model	Maximum tightening torque
KSHY6 × 4 (C)-01,-02	0.85
KSHY8 $ imes$ 5 (C)-01,-02,-11,-12	2.5
KSHY10 × 6 (C)-01,02	6.5
KSHY12 $ imes$ 6 (C)-01,02	8.0
KSHY14 × 8 (C)-01,02	12.0
KSHY16 × 8 (C)-01,02	20.0
KSHY20 × 10 (C)-01,02	30.0

10. Be aware that performance and characteristics change depending on the operating temperature.

Selection guidelines

1. Confirm the thrust


The thrust that is applied to the shock absorber (F) should be weaker than the allowable thrust. If a thrust stronger than the allowable thrust is used, the shock absorber may be damaged in fewer operation cycles than the guaranteed life. See page (5) for the values of allowable thrust.

When using an rotating actuator

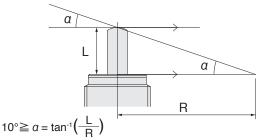
F = T ÷ R

- T: Torque of the rotating actuator $[N{\cdot}m]$
- R: Shock absorber's mounting radius (the distance from the center of rotation to the shock absorber) [m]
- F: Force at the point of distance Rm (thrust applied to the shock absorber) [N]

When using a linear actuator

If the value for F is greater than the allowable thrust, do the following countermeasures.

- Use a larger size shock absorber
- Make R, the mounting radius, larger


2. Confirm the angle of eccentricity

Confirm whether the approximate value for angle of eccentricity of the prospective shock absorbers may be less than 10°. Finally, you should check on the device's drawings since, in actuality, the angles for even the same radii may differ, depending on the shapes and the mounting methods.

If a workpiece is installed so that it contacts the plug of the shock absorber, in parallel, at the stroke end, its approximate angle of eccentricity and minimum mounting radius are as follows.

These are not the actual values because the rotating parts have some thickness.

These are reference values for when you are making a selection.

L: Shock absorber's stroke [mm]

R: Shock absorber's mounting radius [mm]

a : Deflection angle [°]

Model	Stroke[mm]	Allowable angle of eccentricity	Minimum mounting radius [mm]	
KSHY6 $ imes$ 4 (C)	4		22.7	
KSHY8 $ imes$ 5 (C)	5		28.4	
KSHY10 $ imes$ 6 (C)	6		34	
KSHY12 $ imes$ 6 (C)	0	10° or less	34	
KSHY14 $ imes$ 8 (C)	8		45.4	
KSHY16 $ imes$ 8 (C)	0		45.4	
$\rm KSHY20 \times 10~(C)$	10		56.7	

If the allowable angle of eccentricity is exceeded, do the following countermeasures, and then do [1. Confirm the thrust] again.

• Make R, the mounting radius, larger

Use a smaller size shock absorber

3. Confirm the absorption capacity

3-1. Confirm the impact speed Swing angle [rad] Angular velocity ω [rad/s] = $\frac{1}{\text{Target swing time [s]}}$ × 2^{Note} Swing angle [°] $\times \pi \div 180$ = Swing angle [rad] (90° \doteqdot 1.57rad) Velocity at the shock absorber's mounting position $V[m/s] = R \times \omega \leq Maximum impact speed (1 m/s)$ Note: Because the impact speed, not the average speed, is

needed, calculate with twice the value of this.

3-2. Confirm the absorption capacity of the shock absorber

If you are using the impact speed, V, found in step 3-1, confirm the exhibited absorption capacity of the shock absorber (e.g. [J]) on the selection graph on page @. The maximum absorption capacity is reached only when used at the maximum impact speed. The absorption capacity of the shock absorber changes, depending on the operating speed, because the drag of the oil is strong when the flow rate is fast and weak when the flow rate is slow.

3-3. Calculate the moment of inertia

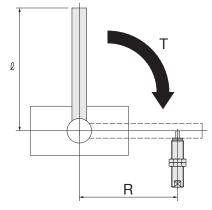
Find the moment of inertia for the impact object I [kg·m2] to calculate the kinetic energy. If the impact object is rotating, you cannot make a selection by only using the impact object mass because the kinetic energy differs depending on the shape, even if the weight is the same. Calculate the approximate value by referring to the diagram for calculating the moment of inertia (pages 48 to 49).

3-4. Calculate the kinetic energy

Confirm that the kinetic energy of the impact object is less that the absorption capacity of the shock absorber. Kinetic energy of the impact object E [J] = $\frac{1}{2}$ I $\omega^2 \le Ex$

Calculating the thrust energy is not necessary because the shock absorber was selected from the allowable thrust in step 1. Assume that the absorption capacity = the allowable kinetic energy.

4. Confirm other specifications


Confirm such specifications as the maximum operating frequency, maximum absorption per unit of time, and operating temperature range.

Selection guidelines

Example selection 1: Using a rotary actuator

<Operating conditions>

When the impact object is a rod

- ① Torque of rotating actuator: T = 5[N·m]
- ② Absorber's mounting radius: R = 50[mm] = 0.05[m]
- ③ Impact object mass: m = 3[kg]
- 4 Length from the center of rotation to the end of the rod:
- $\ell = 120[mm] = 0.12[m]$
- (5) Angle of rotation: 90°
- 6 Target swing time: 0.5[s]

1. Confirm the thrust

Find the thrust, F, that is applied to the shock absorber.

 $F = T \div R$

= (1) 5[N · m] \div (2) 0.05[m]

= 100[N]

Make a selection from a model (KSHY10 or higher) for an allowable thrust of 100 N or more. (Refer to page 50 for specifications.)

2. Confirm the angle of eccentricity

Confirm whether the angle of eccentricity is less than the allowable angle of eccentricity (10°).

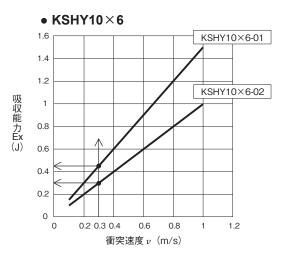
Assume that KSHY10×6 (body thread size: M10, stroke: 6 mm) is used.

$$\alpha = \tan^{-1}\left(\frac{L}{R}\right)$$
$$= \tan^{-1}\left(\frac{6[mm]}{(250[mm])}\right)$$

≑6.84°<10°

3. Confirm the absorption capacity

3-1. Confirm the impact speed


Calculate the velocity at which the impact object impacts the shock absorber.

Swing angle [°] × π ÷ 180 = Swing angle [rad] (5) 90[°] × π ÷ 180 = 1.57rad

Angular velocity ω [rad/sec] = $\frac{\text{Swing angle [rad]}}{\text{Target swing time [s]}} \times 2$ $\omega = \frac{1.57[\text{rad}]}{2.57[\text{rad}]} \times 2$

Velocity, V, of the shock absorber's mounting position [m/s] = $R \times \omega$

V = ② 0.05[m] × 6.28[rad/s] ≒0.31[m/s] < 1m/s **3-2. Confirm the absorption capacity of the shock absorber** Assume that you selected V = 0.31 m/s from the selection graph on page ④ and confirm the absorption capacity, Ex, that KSHY10×6 exhibits.

Values for Ex: KSHY10×6-01: Approx. 0.45 J KSHY10×6-02: Approx. 0.3 J

3-3. Calculate the moment of inertia

Find the moment of inertia for the impact object I $[kg \cdot m^2]$ to calculate the kinetic energy.

According to "Rod (end is the center of rotation)", the diagram for calculating the moment of inertia (pages 48 to 49):

$$I = \frac{m \ell^{2}}{3}$$

= $\frac{(3) 3[kg] \times (4) 0.12[m]^{2}}{3}$
= 0.0144[kg \cdot m^{2}]

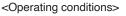
3-4. Calculate the kinetic energy

Calculate the kinetic energy of the impact object to confirm whether it is less than the absorption capacity of the shock absorber.

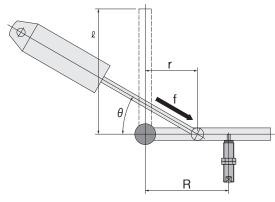
Kinetic energy of the impact object E [J] = $\frac{1}{2}$ I ω^2

 $E = \frac{1}{2} \times 0.0144 [kg \cdot m^2] \times (6.28 [rad/s])^2$

= 0.28[J]


Values for Ex found in step 3-2: KSHY10×6-01: Approx. 0.45 J KSHY10×6-02: Approx. 0.3 J

The shock absorber with the optimum absorption capacity is KSHY10 \times 6-02 because the smaller the gap between the values for E and Ex is, the lower the impact value and the shorter the operating time.


4. Confirm other specifications

Confirm that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, and operating temperature range, are within the specified ranges for KSHY10×6-02.

Example selection 2: Using an air cylinder

When the impact object is a rod

- ① Cylinder thrust: Φ32(0.5MPa)→402[N]
- (2) Cylinder thrust angle: $\theta = 30^{\circ}$
- (3) Mounting position of cylinder's end: r = 30[mm] = 0.03[m]
- ④ Absorber's mounting radius: R = 50[mm] = 0.05[m]
- (5) Impact object mass: m = 3[kg]
- (6) Length from the center of rotation to the end of the rod: $\ell = 120[mm] = 0.12[m]$
- ⑦ Swing angle: 90°
- (8) Target swing time: 0.5[s]

1. Confirm the thrust

Find the thrust, F, that is applied to the shock absorber.

- $F = (f \times \sin \theta \times r) \div R$
 - = ① 402[N] × ② sin30° × ③ 0.03[m] ÷ ④ 0.05[m] = 120.6[N]

Make a selection from a model (KSHY12 or higher) for an allowable thrust of 120.6 N or more.

(Refer to page 50 for specifications.)

2. Confirm the angle of eccentricity

Confirm whether the angle of eccentricity is less than the allowable angle of eccentricity (10°) .

Assume that KSHY12×6 (body thread size: M12, stroke: 6 mm) is used.

$$= \tan^{-1}\left(\frac{L}{R}\right)$$
$$= \tan^{-1}\left(\frac{6[mm]}{450[mm]}\right)$$

≑6.84°<10°

α

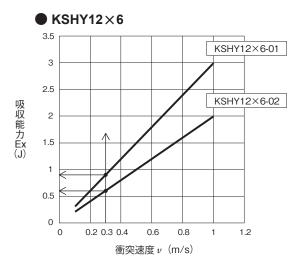
3. Confirm the absorption capacity

3-1. Confirm the impact speed

Calculate the velocity at which the impact object impacts the shock absorber.

Swing angle [°] × π ÷ 180 = Swing angle [rad] $7 90[°] \times \pi \div 180 \rightleftharpoons 1.57$ rad

Angular velocity
$$\omega$$
 [rad/sec] = $\frac{\text{Swing angle [rad]}}{\text{Target swing time [s]}} \times 2$
 $\omega = \frac{1.57[\text{rad]}}{(\$ 0.5[\text{s}])} \times 2$
 $\Rightarrow 6.28[\text{rad/s}]$


Velocity, V, of the shock absorber's mounting position [m/s] = $R \times \omega$

V = ④ 0.05[m] × 6.28[rad/s] ≒0.31[m/s] < 1m/s

3-2. Confirm the absorption capacity of the shock absorber

From the selection graph on page (47):

Assume that you selected V = 0.31 m/s and confirm the absorption capacity, Ex, that KSHY12 $\times 6$ exhibits.

Values for Ex: KSHY12×6-01: Approx. 0.9 J KSHY12×6-02: Approx. 0.6 J

3-3. Calculate the moment of inertia

Find the moment of inertia for the impact object I $[kg \cdot m^2]$ to calculate the kinetic energy.

According to "Rod (end is the center of rotation)", the diagram for calculating the moment of inertia (pages (48) to (49)):

$$= \frac{m \ell^{2}}{3} = \frac{(5) 3[kg] \times (6) 0.12[m]^{2}}{3}$$

= 0.0144[kg • m²]

I

3-4. Calculate the kinetic energy

Calculate the kinetic energy of the impact object to confirm whether it is less than the absorption capacity of the shock absorber.

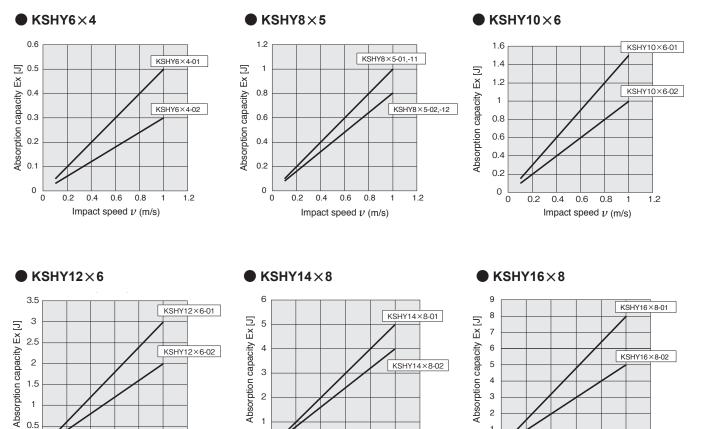
Kinetic energy of the impact object E [J] = $\frac{1}{2}$ I ω^2 E = $\frac{1}{2}$ × 0.0144[kg · m²] × 6.28[rad/s]² = 0.28[J]

Values for Ex found in step 3-2: KSHY12×6-01: Approx. 0.9 J KSHY12×6-02: Approx. 0.6 J

The shock absorber with the optimum absorption capacity is KSHY12 \times 6-02 because the smaller the gap between the values for E and Ex is, the lower the impact value and the shorter the operating time.

4. Confirm other specifications

Confirm that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, and operating temperature range, are within the specified ranges for KSHY12 \times 6-02.


KSHJ

KSH

Cautions for using the selection graphs

- 1. Use with an absorption capacity below the capacity curves.
- 2. The values in the selection graphs are for room temperature (20 to 25°). Be aware that performance and characteristics change depending on the operating temperature.

Selection graph

3

2

1

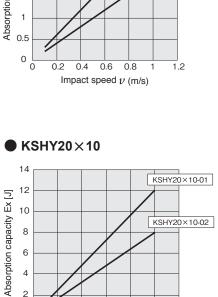
0

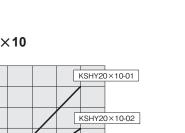
0

1.2

1

Impact speed v (m/s)


0.2

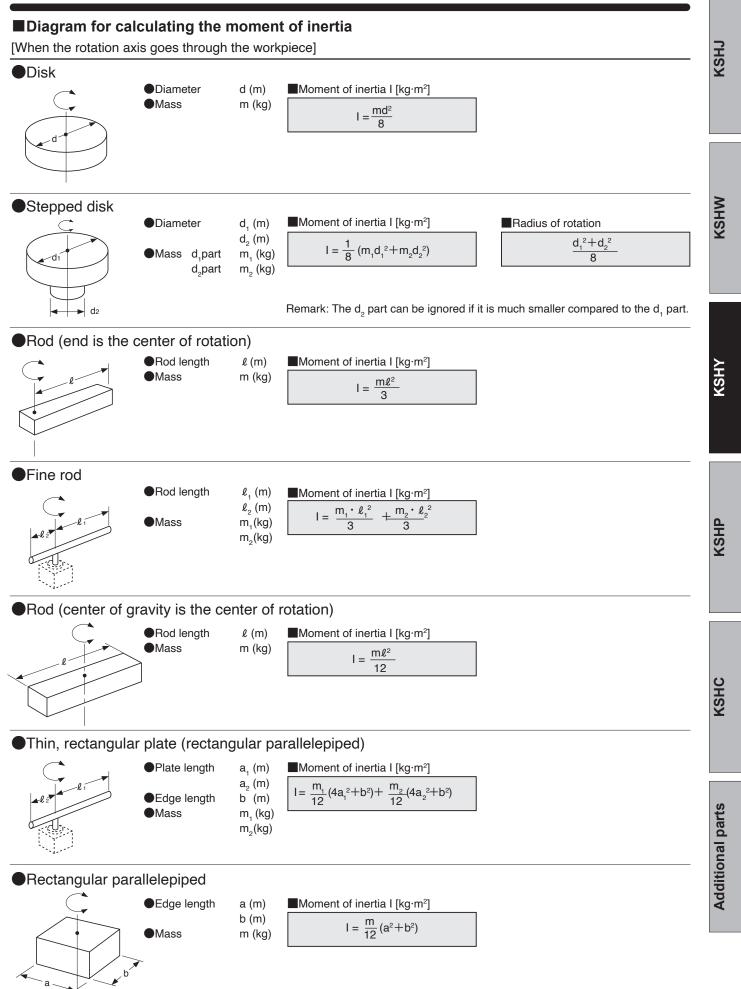

0.4 0.6 0.8

Impact speed v (m/s)

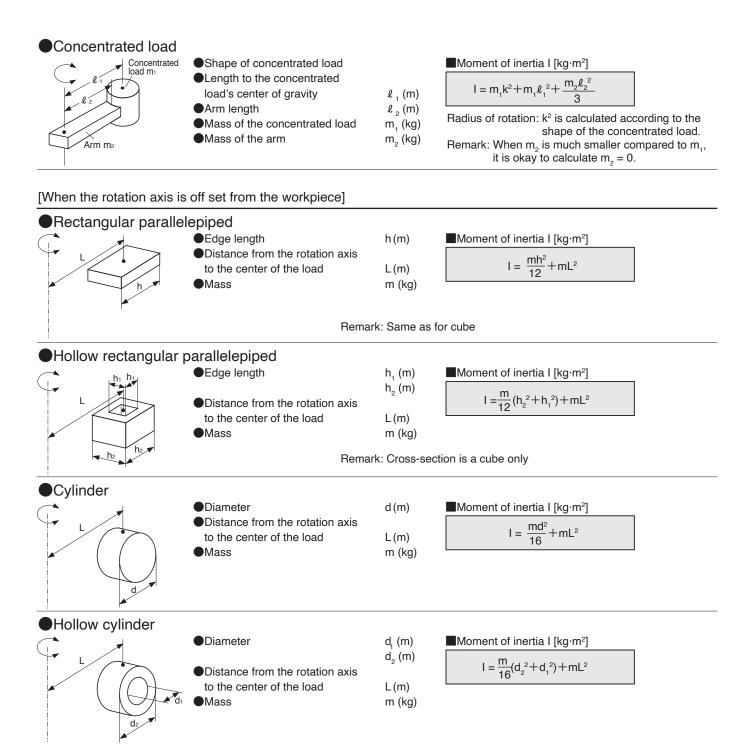
1.2

1

1.2


1

0


0 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 Impact speed v (m/s)

(47) KOGANEI

Selection guidelines

Linear orifice shock absorber

KSHY Series

Specifications

Item	Model	KSHY6×4-01	KSHY6×4-02	KSHY8×5-01,-11	KSHY8×5-02,-12		
Maximum absorption capacity	J	0.5	0.3	1	0.8		
Stroke	mm		4	5			
Impact speed range	m/s	0.1 to 1.0					
Allowable thrust		27.5N	or less	60.3N or less			
Maximum operating cycle	cycle/min		6	60			
Maximum absorption capacity per unit o	f time J/min	1	8	3	36		
Spring return force ^{Note1}	N	3	.5	6.5			
Deflection angle		10° or less					
Operating temperature range ^{Not}	e² ℃	0 to 60					

Item	Model	KSHY10×6-01	KSHY10×6-02	KSHY12×6-01	KSHY12×6-02		
Maximum absorption capacity	J	1.5	1	3	2		
Stroke	mm	6					
Impact speed range	m/s	0.1 to 1.0					
Allowable thrust		100N	or less	157N or less			
Maximum operating cycle	cycle/min		6	0			
Maximum absorption capacity per unit of	f time J/min	4	5	8	0		
Spring return force ^{Note1}	N	8	.5	15.5			
Deflection angle		10° or less					
Operating temperature range ^{Note}	e2 ℃		0 to 60				

Item	Model	KSHY14×8-01	KSHY14×8-02	KSHY16×8-01	KSHY16×8-02	KSHY20×10-01	KSHY20×10-02
Maximum absorption capacity	J	5	4	8	5	12	8
Stroke	mm	8	3	8		10	
Impact speed range	m/s		0.1 to 1.0				
Allowable thrust		245N	or less	402N or less		628N or less	
Maximum operating cycle	cycle/min	6	0	40			
Maximum absorption capacity per unit of	of time J/min	1(00	1:	30	200	
Spring return force ^{Note1}	N	14	.5	14.5		21.5	
Deflection angle				10° or less			
Operating temperature range ^{No}	te2 ℃			0 tc	60		

Note 1: The spring return force cannot be used as a function because it is the return force of the piston rod at full stroke, making it unstable.

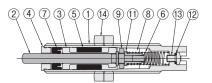
2: The shock absorbing capacity fluctuates based on speed and ambient temperature. Always use a product that is within the range shown by the solid lines in the graphs on pages @.

Mass

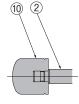
		ï			5			
Model	Podu ^{Note1}	Body ^{Note1} Additional mass		Additional parts' mass				
Woder	Bouy	With plastic cap	Mounting nut (1 ea.)	Stopper nut	Side mounting bracket			
KSHY6×4-01, -02	4.5	0.2	0.4	3	8			
KSHY8×5-01, -11	9	0.4	0.6(0.9) ^{Note2}	4	12			
KSHY10×6-01, -02	20.1	0.8	1.2	7	15			
KSHY12×6-01, 02	32	1.3	1.9	8	22			
KSHY14×8-01, 02	53	2.3	4	15	41			
KSHY16×8-01, -02	70	2.3	6.6	28	65			
KSHY20×10-01, -02	129	5	12.2	55	110			

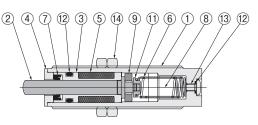
Calculation example: The mass of KSHY10×6C-01-S-2 (with cap, stopper, and side mount) is

20+1.3+7+15 = 43.3g


Note1 : The weight of the main unit includes the weight of 2 mounting nuts.

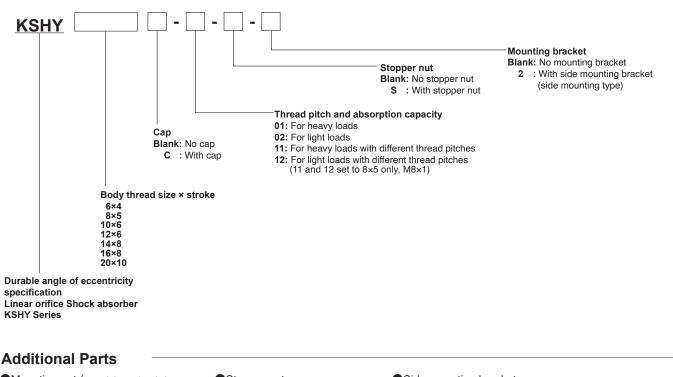
2 : Values in () are the weight of mounting nut for KSHY8x5-11,-12.


Inner Construction and Major Parts and Materials


•KSHY6×4

•KSHY8 to 20

No.	Name	Materials
1	Body ^{Note 1}	Copper alloy (nickel plated)
2	Piston rod ^{Note 2}	Stainless steel,
3	Sleeve	Copper alloy
4	Plug	Stainless steel
5	Accumulator	Synthetic rubber
6	Spring	Spring steel
7	Rod seal	Synthetic rubber
8	Oil	Special oil
9	Piston ring	Stainless steel,
10	Сар	Plastic (POM)
11	Collar Note 3	Stainless steel,
(12)	O-ring	Synthetic rubber
(13)	Screw Note 4	Mild steel (zinc plated)
14)	Mounting nut	Mild steel (nickel plated)

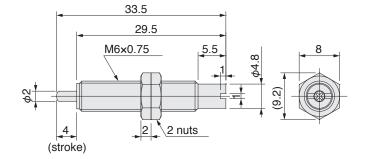

Note1: KSHY6 and 8 are stainless steel

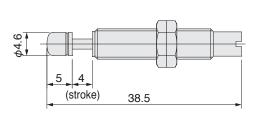
2: Shock absorbers with no caps undergo a quenching treatment.

3: KSHY6 and 8 are copper alloy KSHY10 and 12 are sintered metal

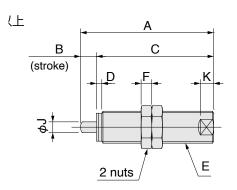
4: KSHY6 and 8 are nickel plated

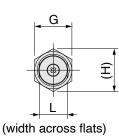
Order Codes

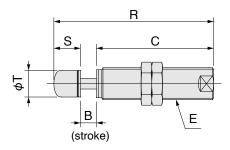

* For the dimension diagrams of the additional parts, see pages (8) to (83.


* The stopper nut and side mount are made from mild steel (nickel plated).

Dimensions (mm)


•KSHY6×4-


•KSHY6×4C-



•KSHY8 to 20

Model Symbol	Α	В	С	D	E	F	G	Н	J	K	L	R	S	Т
KSHY8 $ imes$ 5 (C)-01,-02	36	5	31	1.2	$M8 \times 0.75$	2	10	11.5	2.5	3	7	42	6	6.5
KSHY8 $ imes$ 5 (C)-11,-12	36	5	31	1.2	M8 × 1	3	10	11.5	2.5	3	7	42	6	6.5
KSHY10 $ imes$ 6 (C)-01,-02	46	6	40	2	M10 × 1	3	12	13.9	3	5	8.5	55	9	8
KSHY12 $ imes$ 6 (C)-01,-02	50	6	44	2	M12 × 1	4	14	16.2	4	5	10.5	60	10	10
KSHY14 $ imes$ 8 (C)-01,-02	61	8	53	2	M14 × 1.5	5	17	19.6	5	5	12	72	11	11
KSHY16 × 8 (C)-01,-02	61	8	53	3	M16 × 1.5	7	19	21.9	5	7	13	72	11	11
KSHY20 $ imes$ 10 (C)-01,-02	69	10	59	3	M20 × 1.5	8	24	27.7	6	7	17	84	15	15

KSHW

KSHJ

KSHC

Adjustment Type Linear Orifice® Shock Absorber KSHP Series

Introducing the adjustable linear orifice! Long 3 million cycle operating life! (M42 Exc.) Uses NSF certified H1 oil (non silicon)

Additional parts

KSHP series can solve the problems for users worried about fine tuning absorption of impacts!

Introducing the KSHP Series of Adjustment Type Linear Orifice[®] Shock Absorber

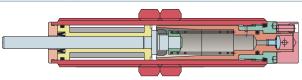
* "Linear Orifice" is a registered trademark of Koganei Corporation.

New release of our first adjustment type linear orifice models!

Shorten operation cycle times by adjusting the absorbing capacity of the end of strokes.

Possible to fine tune for both impact speed and load for proper shock absorption!

Our own construction makes fine tuning easy and minimizes extreme changes in shock absorbing capacity.


Maximum of more than 3 million operation cycles!

Linear orifice construction provides longer life. * "M24" model 8 hundred thousand operation cycles.

Compliant with H1 grade food equipment specifications!

Uses NSF H1 grade oil (non silicon).

Numbers are easy to see and indelible Set to 6 on the scale for maximum absorption Set to 0 on the scale for minimum absorption

Adjusting knob Can be rotated to the left or right

Scaled from 0 to 6

Red mark

Align the red mark to a value on the scale

Lock screw

Lock the adjusting knob in position by tightening the lock screw after completing adjustment (excluding KSHP6 and KSHP8)

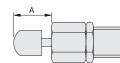
Scaled from 0 to 6 (adjusting knob)

Set to 6 on the scale for maximum absorption Set to 0 on the scale for minimum absorption

Key slot on body

Align a value on the scale to the key slot

CAUTION Read the safety precautions on page (5) before using this product.

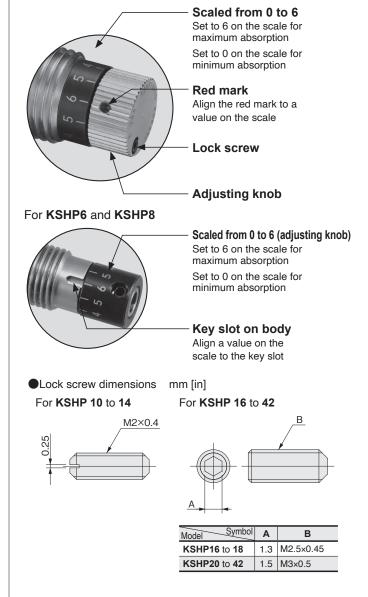

General precautions

Cover the unit when mounting it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc. Dents, scratches, water, oil, or dust on the piston rod results in damage and decreases service life.

Mounting

- 1. Keep the angle of eccentricity, resulting from the load direction and the axis of the shock absorber, under the specified values on page 60. If an eccentric load exceeding the specifications is applied, it could result in breakage or impaired returns. If there is concern that an eccentric load exceeding the specified values will be applied, install a guide, or similar mechanism.
- 2. You cannot mount two or more adjustable type shock absorbers in parallel to boost the absorption capacity (it is difficult to adjust the capacity evenly).
- 3. If using a shock absorber with a plastic or rubber cap, always mount a stopper nut (-S) or an external stopper to ensure that the cap is not subjected to loads at the stroke end. Install the stopper nut in a position such that $A \leq$ the stroke of the shock absorber. Furthermore, you can use a shock absorber that has a plastic cap without a stopper nut (-S) or external stopper, but, over the long-term, the stop location will change due to cap deformation and wear.

- 4. Rubber caps are consumable parts. The service life will vary depending on conditions of the application, replace these parts according to their condition.
- 5. If using a shock absorber with a rubber cap for lateral impacts, such as eccentric or swing impacts, note that the rubber cap may come off or be damaged.
- 6. When mounting the shock absorber, always use the following maximum tightening torque guidelines. Tightening using excessive force may result in damage.


Model	Maximum tigh	ntening torque
Model	N⋅m	in ∙ lbf
KSHP6 × 4 (C)(-F11)	0.85	7.523
KSHP8×6 (C)(-11)(-F11)	2.5	22.128
KSHP10×8 (C)(-F11)	6.5	57.532
KSHP11×8 (C)-F11	—	57.5
KSHP12×10 (C,R)(-F11)	8.0	70.808
KSHP14×12 (C,R)(-F11)	12.0	106.2
KSHP16×15 (C,R)	20.0	_
KSHP18×20 (C,R)(-F11)	25.0	221.3
KSHP20×22 (C,R)	30.0	—
KSHP25×25 (C,R)(-F11)	42.0	371.7
KSHP30×30 (C,R)(-F11)	60.0	531.1
KSHP36×50 (C,R)(-F11)	72.0	637.3
KSHP42×50 (C,R)(-F11)	85.0	752.3

- 7. Ensure that the hardness of the surface directly impacting the piston rod of the shock absorber is over HRc40 hardness (excluding models with rubber or plastic caps).
- 8. Be aware that performance and characteristics change depending on the operating temperature.

Adjusting the shock absorbing capacity

- 1. For the KSHP10 to KSHP42 models, align the red mark on the adjusting knob to the 6 on the scale. For the KSHP6 and KSHP8 models, align the 6 on the scale to the key slot on the body.
- 2. For large impacts on collision or if a long time is required for a full stroke, reduce the value on the scale gradually.
- 3. Always tighten the lock screw to fix the knob in place after completing adjustment. (excluding KSHP6 and KSHP8)

KSHW

KSHJ

How to select shock absorbers

1. Confirm the thrust

Confirm the thrust that is used, and then check the prospective shock absorbers from the table of recommended cylinder bore sizes on page (38). If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than is guaranteed.

2. Confirm the kinetic energy

Confirm I and II below, and then check page 39 for the selection graphs for prospective shock absorbers from [1. Confirm the thrust]. (*)

I Impact object mass: m [kg]

II Impact speed: v [m/s]

Because "v" is the impact speed, not the average speed,

when using a cylinder,

v = m [cylinder stroke] \div s [operating time] \times 2

Select a model in which ${\rm I}$ and ${\rm I\hspace{-.1em}I}$ fit within the range enclosed by the capacity curves.

If multiple models are applicable, use the model that is closest to both the capacity curves and the operating conditions. The further the model you select is from the capacity curves and the operating conditions, the slower it will tend to be.

3. Confirm other specifications

Confirm that such specifications as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range are within the range for the shock absorber that you selected.

* The value for the kinetic energy, E, can be found by doing the following calculation. However, the shock absorber's capacity for absorption changes depending on the impact speed. When the shock absorber is doing low-speed operations, it has less drag than when it is doing high-speed operations.

The maximum absorption capacity that is noted in the specifications is reached only at the maximum impact speed.

Therefore, do not choose a shock absorber by comparing E to the maximum absorption capacity; confirm the capacity using the selection graph.

 $\mathsf{E}=\frac{1}{2}\,\mathsf{mv}^2$

E: Kinetic energy (J) m: Impact object mass [kg] v: Impact speed (m/s)

Range in the selection graph

Vertical axis range :	Impao	ct speed
Maximum impact speed $\ge \frac{V}{(0)}$	perat	ing condition)
Horizontal axis range : Shock absorber's maximum absorption capacity at the impact speed (v = m/s)	≧	E Kinetic energy (operating condition)

Calculating the thrust energy is not necessary because the size of the shock absorber is limited by the thrust in step 1.

Koganei's selectable content

You can also select equipment from Koganei's homepage. Visit http://www.koganei.co.jp.

The results of selections using the method above may differ from the results of selections for the selectable content on our homepage. If this happens, please contact us.

Example of selecting a shock absorber [Operating conditions] ①Bore size of the cylinder being used: φ16

②Cylinder stroke: 100 mm = 0.1 m

③Pressure applied to the cylinder: 0.6 MPa

(4) Cylinder's operating time: 0.4 s

⑤Impact object mass: 10 kg

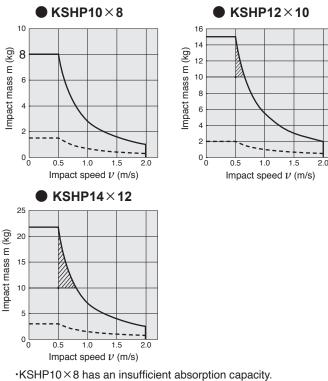
1. Confirm the thrust

Either calculate or find the thrust in the cylinder thrust table on page $^{\textcircled{B}}$. The cylinder thrust based on ① and ③ is about 121 N.

Cylinder thrust	100.5N		120.6N		126N
Cylinder bore size	φ16	<	φ16	<	φ20
Applied pressure	0.5MPa		0.6MPa		0.4MPa

As mentioned above, although the cylinder being used is ϕ 16, the pressure applied to the cylinder exceeds 0.5 MPa, so consider the ϕ 20 cylinder (lower than 0.4 MPa) and check the table of recommended cylinder bore sizes on page ⁽³⁾/₍₃₎.

The following are prospective models.


- ·KSHP10×8
 ·KSHP12×10
 ·KSHP14×12
- KSHP16×15
 KSHP18×20
 KSHP20×22

2. Confirm the kinetic energy

- $\rm I~$ The impact object mass m = 10 kg from (5)
- ${\rm I\!I}$ Find the impact speed, v, from (2) and (4).

According to the selection graphs on page ⁽⁵⁹⁾, the shock absorber with the optimum absorption capacity for operating conditions is KSHP12×10.

2

•The absorption capacities for all of the other shock absorbers are higher than that of KSHP12×10, so they do not fall within

the operating conditions and capacity curves.

3. Confirm other specifications

Verify that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range, are within the specified ranges for KSHP12 \times 10.

Recommended cylinder bore size

Cylinder bore	φ4	φ6	φ8	φ10	φ12	φ16	φ 20	φ25	φ32	φ40	Φ 50	φ63	φ 80	φ100	φ 125
Model	ΨŦ	Ψ	ΨŪ	ψισ	Ψ12	ψισ	Ψ20	Ψ20	Ψυ	ΨΨ	ΨΟΟ	ΨΟΟ	ΨΟΟ	ψισσ	ψιΣυ
KSHP6×4 (-F11)	\diamond	\diamond	0	0	0										
KSHP8×6 (-11)(-F11)		\diamond	\diamond	O	0	0									
KSHP10×8 (-F11)			\diamond	\diamond	0	0	0								
KSHP11×8-F11			\diamond	\diamond	0	0	0								
KSHP12×10 (-F11)				\diamond	\diamond	0	0	0							
KSHP14×12 (-F11)					\diamond	\diamond	0	O	0						
KSHP16×15						\diamond	\diamond	0	0	0					
KSHP18×20 (-F11)							\diamond	\diamond	O	0					
KSHP20×22							\diamond	\diamond	0	0	0				
KSHP25×25 (-F11)								\diamond	\diamond	0	0	0			
KSHP30×30 (-F11)									\diamond	\diamond	0	0	0		
KSHP36×50 (-F11)										\diamond	\diamond	0	0	0	
KSHP42×50 (-F11)											\diamond	\diamond	0	0	0

 $\diamondsuit:$ 0.3 MPa or higher $\quad \bigcirc:$ 0.5 MPa or lower $\quad \bigcirc:$ 0.4 MPa or lower

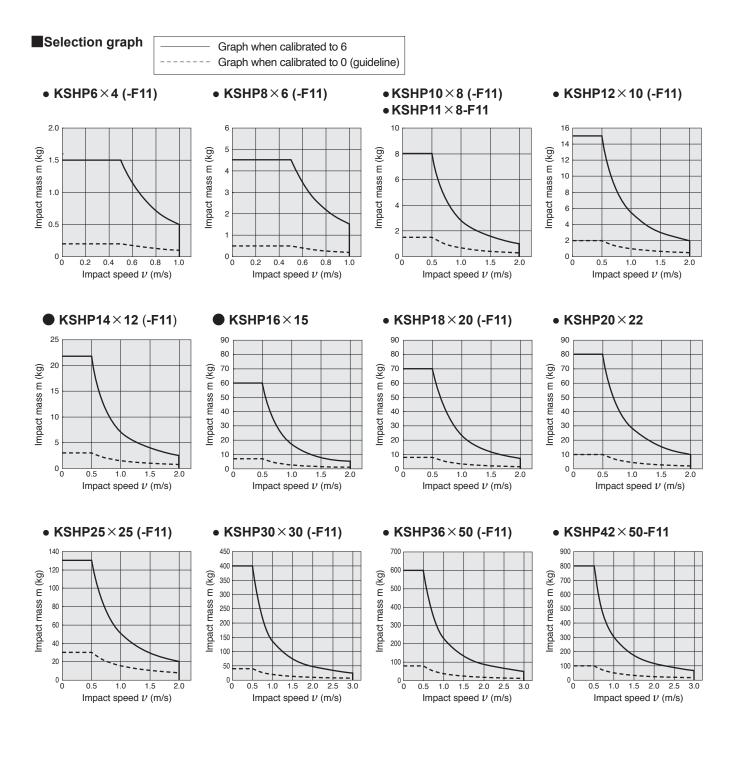
Note 1: If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than the value that is guaranteed.

Note 2: KSHP11 \times 8 has only inch specifications.

Cylinder thrust

Bore size	Pressure area				Air pi	ressure MPa	[psi.]			
mm [in.]	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]
φ4	12.6 [0.020]	1.3 [0.292]	2.5 [0.562]	3.8 [0.854]	5 [1.124]	6.3 [1.416]	7.5 [1.686]	8.8 [1.978]	10.1 [2.270]	11.3 [2.540]
φ6	28.3 [0.044]	2.8 [0.629]	5.7 [1.281]	8.5 [1.911]	11.3 [2.540]	14.1 [3.170]	17.0 [3.822]	19.8 [4.451]	22.6 [5.080]	25.4 [5.710]
φ8	50.3 [0.078]	5 [1.124]	10.1 [2.270]	15.1 [3.394]	20.1 [4.518]	25.1 [5.642]	30.2 [6.789]	35.2 [7.913]	40.2 [9.037]	45.2 [10.161]
φ10	78.5 [0.122]	7.9 [1.776]	15.7 [3.529]	23.6 [5.305]	31.4 [7.059]	39.3 [8.835]	47.1 [10.588]	55 [12.364]	62.8 [14.117]	70.7 [15.893]
φ12	113 [0.175]	11.3 [2.540]	22.6 [5.080]	33.9 [7.621]	45.2 [10.161]	56.5 [12.701]	67.9 [15.264]	79.2 [17.804]	90.5 [20.344]	101.8 [22.885]
φ16	201 [0.312]	20.1 [4.518]	40.2 [9.037]	60.3 [13.555]	80.4 [18.074]	100.5 [22.592]	121 [27.201]	141 [31.697]	161 [36.193]	181 [40.689]
φ20	314 [0.487]	31.4 [7.059]	62.8 [14.117]	94.2 [21.176]	126 [28.325]	157 [35.294]	188 [42.262]	220 [49.456]	251 [56.425]	283 [63.618]
φ25	491 [0.761]	49.1 [11.038]	98.2 [22.075]	147 [33.046]	196 [44.061]	245 [55.076]	295 [66.316]	344 [77.331]	393 [88.346]	442 [99.362]
φ32	804 [1.246]	80.4 [18.074]	161 [36.193]	241 [54.177]	322 [72.386]	402 [90.370]	483 [108.6]	563 [126.6]	643 [144.5]	724 [162.8]
φ40	1257 [1.948]	126 [28.325]	251 [56.425]	377 [84.750]	503 [113.1]	628 [141.2]	754 [169.5]	880 [197.8]	1005 [225.9]	1131 [254.2]
φ50	1963 [3.043]	196 [44.061]	393 [88.346]	589 [132.4]	785 [176.5]	982 [220.8]	1178 [264.8]	1374 [308.9]	1571 [353.2]	1767 [397.2]
φ63	3117 [4.831]	312 [70.138]	623 [140.1]	935 [210.2]	1247 [280.3]	1559 [350.5]	1870 [420.4]	2182 [490.5]	2494 [560.7]	2806 [630.8]
φ80	5027 [7.792]	503 [113.1]	1005 [225.9]	1508 [339.0]	2011 [452.1]	2513 [564.9]	3016 [678.0]	3519 [791.1]	4021 [903.9]	4524 [1017]
φ100	7854 [12.174]	785 [176.5]	1571 [353.2]	2356 [529.6]	3142 [706.3]	3927 [882.8]	4712 [1059]	5498 [1236]	6283 [1412]	7069 [1589]
φ125	12272 [19.022]	1227 [275.8]	2454 [551.7]	3682 [827.7]	4909 [1104]	6136 [1379]	7363 [1655]	8590 [1931]	9817 [2207]	11045 [2483]

KSHJ


KSHY

KSHP

N [lbf.]

Cautions for using the selection graphs

- 1. The selection graphs are calculated with a cylinder operating air pressure of 0.5 MPa.
- 2. The values in the selection graphs are for room temperature (20 to 25°). Be aware that performance and characteristics change depending on the operating temperature.
- 3. Select a shock absorber that is as close to, yet within, the capacity line(s).
- You can select them on the Koganei home page. Go to http://www.koganei.co.jp The results of selections using our catalog may differ from the results of selections on our homepage.

Linear orifice shock absorber

KSHP Series

Specifications

Model (in inches)	KSHP6 × 4 (KSHP6 × 4-F11)	K	SHP8 \times 6, KSHP8 \times 6-11		
	, ,		(KSHP8×6-F11)		
Maximum absorption capacity J(in.lbs) Absorption stroke mm(in.)	0.25 (2.213) 4 (0.157)		0.75 (6.638) 6 (0.236)		
Impact speed range m/s(ft/s)	4 (0.157)	0.1 to 1 (0.33 to 3.28)	0 (0.230)		
Maximum operating cycle cycle/min		50			
Maximum absorption capacity per unit of time J/min		30			
(in.lbs/min)	7.5 (66.4)		22.5 (199.3)		
Spring return force ^{Note1} N	2.6	10	2.9		
Deflection angle Operating temperature range ^{Note2} °C(°F)		1° or less 0 to 60 (32 to 140)			
Operating temperature range ^{Note2} °C(°F)		0 10 60 (32 10 140)			
Model (in inches)	KSHP10×8 (KSHP10×8-F11, KSHP11×8-F11)	KSHP12×10 (KSHP12×10-F11)	KSHP14×12 (KSHP14×12-F11)		
Maximum absorption capacity J(in.lbs)	2 (17.701)	4 (35.403)	5 (44.254)		
Absorption stroke mm(in.)	8 (0.315)	10 (0.394)	12 (0.472)		
mpact speed range m/s(ft/s)	· · · ·	0.1 to 2 (0.33 to 6.56)			
Maximum operating cycle cycle/min		50			
Maximum absorption capacity per unit of time J/min (in.lbs/min)	60 (531.4)	120 (1062.7)	150 (1328.4)		
Spring return force ^{Note1} N	6.5	9.6	9.0		
Deflection angle	I	1° or less			
Operating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)			
Model (in inches)	KSHP16×15	KSHP18×20	KSHP20×22		
tem		(KSHP18×20-F11)			
Aaximum absorption capacity J(in.lbs)	10	15 (132.8)	20		
Absorption stroke mm(in.)	15	20 (0.787)	22		
mpact speed range m/s(ft/s) Aximum operating cycle cycle/min	40	0.1 to 2 (0.33 to 6.56)	30		
Maximum absorption capacity per unit of time J/min	-	000 (0 (00 0)			
(in.lbs/min)	240	360 (3188.2)	360		
Spring return force ^{Note1} N	20.5	23.0	18.4		
Deflection angle		3° or less			
Dperating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)			
Model (in inches)	KSHP25×25	KSHP30×30	KSHP36×50		
tem	(KSHP25×25-F11)	(KSHP30×30-F11)	(KSHP36 × 50-F11)		
Maximum absorption capacity J(in.lbs)	40 (354.0)	110 (973.6)	200 (1770)		
Absorption stroke mm(in.)	25 (0.984)	30 (1.181)	50 (1.969)		
mpact speed range m/s(ft/s) Aaximum operating cycle cycle/min	0.1 to 2 (0.33 to 6.56) 30	20	0.33 to 9.84)		
Maximum operating cycle cycle/min Maximum absorption capacity per unit of time J/min					
(in.lbs/min)	720 (6376.3)	1320 (11690)	1800 (15940.8)		
Spring return force ^{Note1} N	32.3	42.3 3° or less	65.8		
Deflection angle Dperating temperature range ^{Note2} °C(°F)		0 to 60 (32 to 140)			
Sporating temperature range (C)		0 10 00 (02 10 140)			
Model (in inches)		KSHP42 × 50 (KSHP42 × 50-F11)			
Maximum absorption capacity J(in.lbs)		300 (2655)			
Absorption stroke mm(in.)		50 (1.969)			
mpact speed range m/s(ft/s)		0.1 to 3 (0.33 to 9.84)			
Maximum operating cycle cycle/min		10			
Maximum absorption capacity per unit of time J/min (in.lbs/min)		2000 (17712.0)			
Spring return force ^{Note1} N		64.2			
Deflection angle		3° or less			

Note1: The spring return force is the force of the piston rod when it returns from a full stroke. It is not stable, so cannot be used as other than rod return. 2: The shock absorber's shock absorbing capacity fluctuates based on speed and ambient temperature.

Use the product within the ranges of the selection graphs (impact mass, impact speed diagram) on page 69.

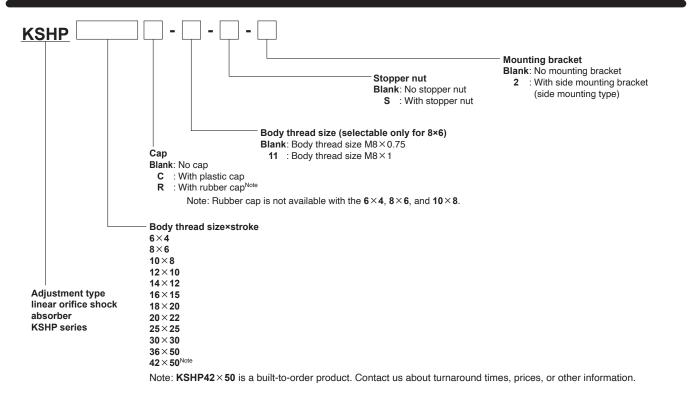
3: KSHP11 has only inch specifications.

* The maximum tightening torque of KSHP11 is different from that of KSHP10. See page 66 for details on the maximum tightening torque. 4: KSHP16×15 and KSHP20×22 do not have inch specifications.

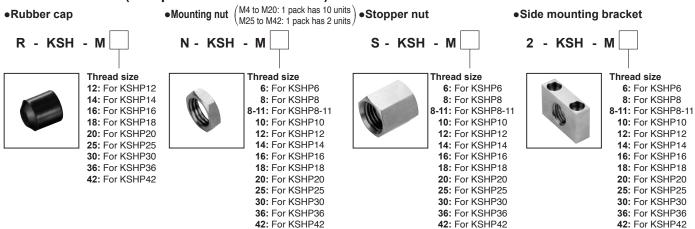
KSHJ

KSHW

KSHY

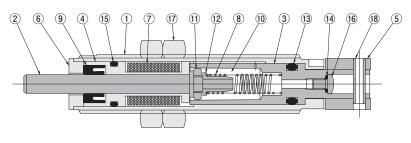

Mass (Specifications in mm)

						g	
Model	Main unit ^{Note}	Addition	al mass	Additional parts' mass			
Woder	iviain unit	With plastic cap	With rubber cap	Mounting nut (1 ea.)	Stopper nut	Side mounting bracket	
KSHP6×4	5.1	0.2	—	0.4	2	8	
KSHP8×6 (-11)	11.3(11.5)	0.5	-	0.6(0.9)	4	12	
KSHP10×8	26.5	0.7	-	1.2	7	15	
KSHP12×10	43.5	1.1	1.2	1.9	8	22	
KSHP14×12	66.5	1.1	1.8	4.0	15	41	
KSHP16×15	98.5	1.6	3.4	6.6	28	65	
KSHP18×20	144	4.1	5.3	8.8	37	100	
KSHP20×22	186	5.4	6.9	12.2	55	110	
KSHP25 × 25	360	5.3	5.7	23.0	95	360	
KSHP3×30	569	50	49	32.5	140	455	
KSHP36×50	1130	110	109	95.5	330	2650	
KSHP42 × 50	1515	110	109	93.0	320	2400	


Calculation example: The mass of KSHP10 \times 8C-S-2 (with cap, stopper, and side mount) is 26.5 + 0.7 + 7 + 15 = 49.2g

Note: The weight of the main unit includes the weight of 2 mounting nuts.

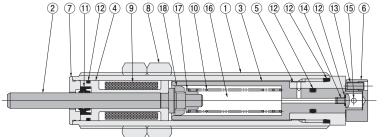
Order Codes (specifications in mm)


Additional Parts (no specifications in inches)

* For the dimension diagrams of the additional parts, see pages (8) to (8).
 * The stopper nut and side mount are made from mild steel (nickel plated).
 (61) KOGANEI

Inner Construction and Major Parts and Materials

•M6,**M8** size (11/4-32 UNEF, 5/16-32 UNEF) * The inch sizes are inside the ().



With plastic cap (C)

No	Name	Materials
1	Body	Stainless steel
2	Piston rod	Stainless steel
3	Inner tube	Stainless steel
4	Sleeve	Copper alloy
(5)	Adjusting knob	Copper alloy (black electroplated)
6	Plug	Stainless steel
\bigcirc	Accumulator	Synthetic rubber
8	Spring	Spring steel
9	Rod seal	Synthetic rubber
10	Oil	Special oil (H1 compliant)
(1)	Piston ring	Copper alloy
(12)	Collar	Copper alloy
(13)	O-ring	Synthetic rubber
(14)	O-ring	Synthetic rubber
(15)	O-ring ^{Note}	Synthetic rubber
(16)	Screw	Mild steel (nickel plated)
17	Mounting nut	Mild steel (nickel plated)
(18)	Spring pin	Steel (oxide film)
(19)	Сар	Plastic (POM)

Note: Not available for KSHP6×4.

•M10 to M42 size (3/8-32 UNEF to 1 3/4-12 UN)	* The inch sizes are inside the ().

With plastic cap (C) With rubber cap (R)

For KSHP 30 \times 30 and KSHP 42 \times 50

With plastic cap (C)

24 25 26 2

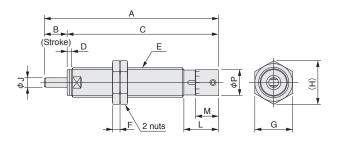
cap (C) With rubber cap (R)

No.	Name	Materials
1	Body	Free-cutting steel (nickel plated)
2	Piston rod ^{Note1}	Steel (nickel plated)
3	Inner tube	Stainless steel
4	Sleeve	Copper alloy
(5)	Housing	Mild steel (black electroplated)
6	Adjusting knob	Copper alloy (nickel plated)
\bigcirc	Plug	Stainless steel
8	Mounting nut	Mild steel (nickel plated)
9	Accumulator	Synthetic rubber
(10)	Spring	Spring steel
11	Rod seal	Synthetic rubber
(12)	O-ring	Synthetic rubber
(13)	Lock screw ^{Note2}	Steel (oxide film)
(14)	Screw ^{Note3}	Mild steel (zinc plated)
(15)	Spring pin	Steel (oxide film)
(16)	Oil	Special oil (H1 compliant)
(17)	Collar ^{Note4}	Stainless steel
(18)	Piston ring	Stainless steel
(19)	Washers ^{Note 5}	Stainless steel
20	Сар	Plastic (POM)
(21)	Rubber cap	Urethane rubber
(22)	Сар	Plastic (POM)
23	Сар	Plastic (POM)
24	Rubber cap	Urethane rubber
25	Metal cap	Stainless steel
26	Hexagon socket head screw	Stainless steel

Note 1: KSHP 10 to 12 are stainless steel

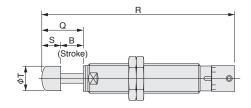
2: KSHP 10 to 14 are slotted lock screws.

3: KSHP 30 to 42 are stainless steel with button

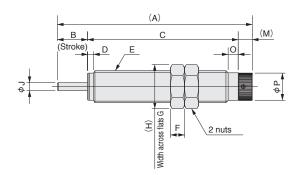

- head screw 4: KSHP 10 are copper alloy and KSHP 12 to 14 are
- sintered metal
- 5: KSHP 18 to 20 only

KSHY

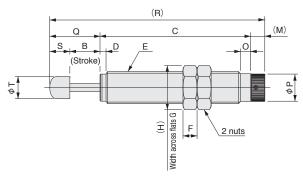
KSHJ


KSHW

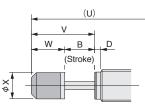
●No rod end cap: KSHP□×□


•With rod end cap

With plastic cap: $\textbf{KSHP} \square \times \square \textbf{C}$

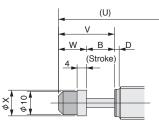

Model	Α	В	С	D	E	F	G	н	J	L	М	Р	Q	R	S	Т
KSHP6×4 (C)	36	4	32	0.5	M6×0.75	2	8	9.2	2	6.5	5.4	5	8	40	4	4.6
KSHP8 × 6 (C)	46	6	40	1.2	M8×0.75	2	10	11.5	2.5	9	6	6.8	11	51	5	6.5
KSHP8×6 (C)-11	46	6	40	1.2	M8×1	3	10	11.5	2.5	9	6	6.8	11	51	5	6.5

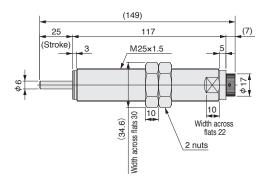
•No rod end cap: $KSHP \supseteq \times \Box$



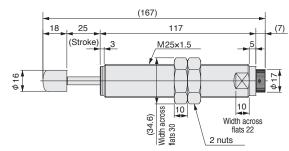
•With rod end cap

With plastic cap: $KSHP \supseteq \times \Box C$

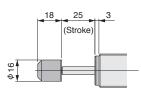



Note: Rubber cap is not available with the $\textbf{KSHP10}{\times}8$

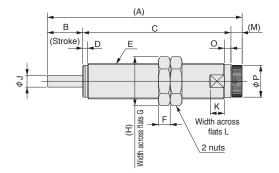
With rubber cap: For the KSHP14 × 12R


Model Symbol	Α	В	С	D	E	F	G	н	J	М	0	Р	Q	R	S	Т	U	V	w	X
KSHP10 × 8 (C)	69	8	56	6	M10×1	3	12	13.9	3	5	4	8.7	16	77	8	8	-	-	-	-
KSHP12×10 (C,R)	75	10	60	2	M12×1	4	14	16.2	3	5	4	10.7	20	85	10	10	85	20	10	10
KSHP14 × 12 (C,R)	87	12	70	2	M14×1.5	5	17	19.6	4	5	4	10.7	22	97	10	11	99	24	12	11
KSHP16 × 15 (C,R)	97	15	75	3	M16×1.5	7	19	21.9	4	7	5	13.5	25	107	10	11	113.5	31.5	16.5	13
KSHP18 × 20 (C,R)	116	20	89	3	M18×1.5	8	21	24.2	5	7	5	13.5	35	131	15	15	131.7	35.7	15.7	15
KSHP20 × 22 (C,R)	121	22	92	3	M20×1.5	8	24	27.7	5	7	5	17	40	139	18	16	139.2	40.2	18.2	16

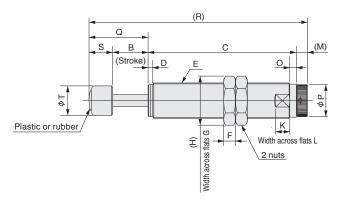
•No rod end cap: KSHP25 × 25



With rod end cap


With plastic cap: KSHP25 × 25C

With rubber cap: $\textbf{KSHP25} \times \textbf{25R}$



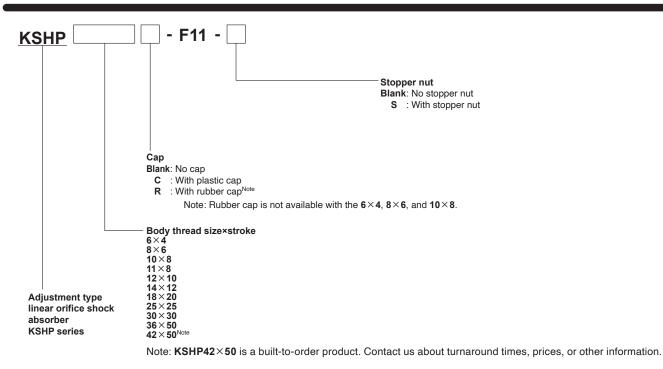
•No rod end cap: $\mathbf{KSHP} \supseteq \times \Box$

•With rod end cap

With plastic cap: $KSHP \supseteq \times \Box C$ With rubber cap: $KSHP \supseteq \times \Box R$

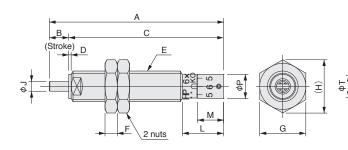
Model Symbol	Α	В	С	D	E	F	G	н	J	К	L	М	0	Р	Q	R	S	Т
KSHP30 × 30 (C,R)	165	30	125.5	4	M30×1.5	10	36	41.6	10	12	28	9.5	5.5	27	50	185	20	25
KSHP36 × 50 (C,R)	229	50	169.5	5	M36×1.5	15	46	53.1	12	12	33	9.5	6	27	55	254	25	32
$KSHP42 \times 50 (C,R)$	235.5	50	173	5	M42×1.5	15	50	57.7	12	20	38	12.5	7	38	75	260.5	25	32

Mass (Specifications in inches)

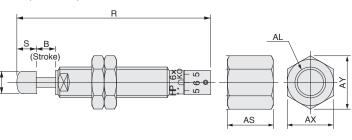

Model	Main unit ^{Note1}	Addition	nal mass	Additional pa	arts' mass
Woder	Main unit.	With plastic cap	With rubber cap	Mounting nut (1 ea.)	Stopper nut
KSHP6×4 -F11	0.2	0.007	-	0.04	0.1
KSHP8×6 -11-F11	0.5	0.02	-	0.06	0.2
KSHP10×8 -F11	0.9	0.02	_	0.07	0.4
KSHP11×8 -F11	1.2	0.02	_	0.08	0.4
KSHP12×10 -F11	1.7	0.04	0.04	0.1	0.5
KSHP14×12 -F11	2.6	0.04	0.06	0.2	0.7
KSHP18×20 -F11	5.9	0.1	0.2	0.4	2.5
KSHP25×25 -F11	13.2	0.2	0.2	1.1	4.4
KSHP30×30 -F11	22.2	1.8	1.7	1.3	5.5
KSHP36×50 -F11	35.3	3.9	3.8	3.0	9.8
KSHP42×50 -F11	63.0	3.9	3.8	3.4	10.8

Calculation example: The mass of KSHP10 \times 8C-S-2 (with cap and stopper) is

0.9 + 0.02 + 0.4 = 1.32oz

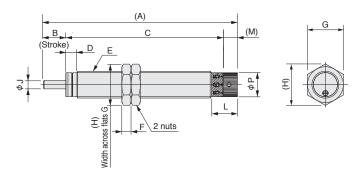

Note1: The weight of the main unit includes the weight of 2 mounting nuts. Note2: KSHP11×8 has only inch specifications.

Order Codes (specifications in inches)

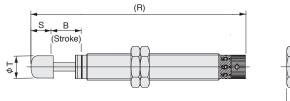

Dimensions (in)

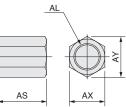
•No rod end cap: $\mathbf{KSHP} \supseteq \times \Box$

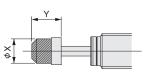
•With rod end cap


With plastic cap: $\mathbf{KSHP} \square \times \square \mathbf{C}$

KSHP6×4 (C)-F11 1.417 0.157 1.26 0.02 1/4-32 UNEF 0.1 3/8 0.433 0.079 0.335 0.213 0.197 1.575 0.157 KSHP8×6 (C)-F11 1.811 0.236 1.575 0.047 5/16-32 UNEF 0.13 7/16 0.505 0.098 0.335 0.236 0.268 2.008 0.197	Model Symbol	Α	В	С	D	E	F	G	Н	J	L	М	Р	R	S
KSHP8 × 6 (C)-F11 1.811 0.236 1.575 0.047 5/16-32 UNEF 0.13 7/16 0.505 0.098 0.358 0.236 0.268 2.008 0.197	KSHP6×4 (C)-F11	1.417	0.157	1.26	0.02	1/4-32 UNEF	0.1	3/8	0.433	0.079	0.335	0.213	0.197	1.575	0.157
	$KSHP8 \times 6 (C)-F11$	1.811	0.236	1.575	0.047	5/16-32 UNEF	0.13	7/16	0.505	0.098	0.358	0.236	0.268	2.008	0.197

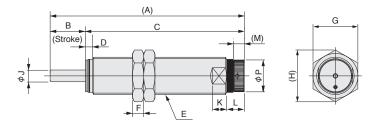

Model Symbol	т	AL	AS	AX	AY
KSHP6×4 (C)-F11	0.181	1/4-32 UNEF	0.4	3/8	0.433
$KSHP8 \times 6 (C)-F11$	0.256	5/16-32 UNEF	7/16	7/16	0.505


•No rod end cap: $KSHP \supseteq \times \Box$

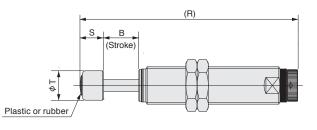

•With rod end cap

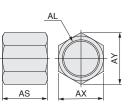
With plastic cap: $KSHP \supseteq \times \Box C$

With rubber cap: $\mathbf{KSHP} \square \times \square \mathbf{R}$


Note: Rubber cap is not available with the KSHP10×8, KSHP11×8

Model	Symbol	Α	В	С	D		E	F	G	Н	J	L	м	Р	R	S
KSHP10×8 (0	;)-F11	2.724	0.315	2.409	0.157	3/8-32 l	JNEF	0.13	1/2	0.577	0.118	0.362	0.197	0.335	3.039	0.315
KSHP11 × 8 (C	;)-F11	2.724	0.315	2.409	0.157	7/16-28	UNEF	0.15	9/16	0.65	0.118	0.362	0.197	0.343	3.039	0.315
KSHP12×10 (C,R)-F11	2.961	0.394	2.567	0.157	1/2-20 l	JNF	0.15	5/8	0.722	0.118	0.362	0.197	0.421	3.354	0.394
KSHP14×12 (C,R)-F11	3.433	0.472	2.961	0.157	9/16-18	UNF	7/32	11/16	0.794	0.157	0.362	0.197	0.421	3.827	0.394
KSHP18×20 (C,R)-F11	4.575	0.787	3.787	0.197	3/4-16 l	JNF	1/4	15/16	1.082	0.197	0.48	0.276	0.531	5.165	0.591
KSHP25×25 (C,R)-F11	5.874	0.984	4.89	0.197	1-12 UN	١F	3/8	1 1/4	1.443	0.236	0.48	0.276	0.669	6.583	0.709
Madal	Symbol	т	X	V	Δ	1	۵S	ΔΥ	ΔΥ							


Model Symbol	Т	Х	Y	AL	AS	AX	AY
KSHP10 × 8 (C)-F11	0.315	-	-	3/8-32 UNEF	11/16	1/2	0.577
KSHP11 × 8 (C)-F11	0.315	-	-	7/16-28 UNEF	11/16	9/16	0.65
KSHP12×10 (C,R)-F11	0.394	0.394	0.394	1/2-20 UNF	11/16	5/8	0.722
KSHP14 × 12 (C,R)-F11	0.433	0.433	0.472	9/16-18 UNF	3/4	11/16	0.794
KSHP18 × 20 (C,R)-F11	0.591	0.591	0.618	3/4-16 UNF	1 1/2	15/16	1.082
KSHP25 × 25 (C,R)-F11	0.63	0.63	0.709	1-12 UNF	1 1/2	1 1/4	1.443


Dimensions (in)

$\blacksquare No rod end cap: \textbf{KSHP} \square \times \square$

●With rod end cap With plastic cap: KSHP × □C With rubber cap: KSHP × □R

Model Symbol	Α	В	С	D	E	F	G	н	J	к	L	М	Р	R	S
KSHP30 × 30 (C,R)-F11	6.496	1.181	5.315	0.236	1 1/4-12 UNF	3/8	1 1/2	1.732	0.394	0.472	0.591	0.354	1.063	7.283	0.787
KSHP36 × 50 (C,R)-F11	9.016	1.969	7.047	0.276	1 3/8-12 UNF	5/8	1 11/16	1.948	0.472	0.472	0.61	0.354	1.063	10	0.984
KSHP42 × 50 (C,R)-F11	9.272	1.969	7.303	0.276	1 3/4-12 UN	5/8	2	2.309	0.472	0.787	0.768	0.472	1.496	10.256	0.984

Model Symbol	Т	AL	AS	AX	AY
KSHP30 × 30 (C,R)-F11	0.984	1 1/4-12 UNF	1 1/2	1 1/2	1.732
KSHP36 × 50 (C,R)-F11	1.26	1 3/8-12 UNF	2	1 11/16	1.948
KSHP42 × 50 (C,R)-F11	1.26	1 3/4-12 UN	2	2	2.309

Linear Orifice Type KSHC Series Clean Room Specification Shock Absorbers

KSHW

KSHY

KSHP

KSHC

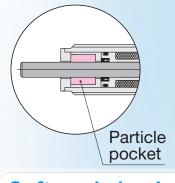
Additional parts

Low dust emissions Softened shocks Silicone–free

Shock Absorbers with Clean Specifications

Linear orifice type KSHC series (fixed type)

"Linear Orifice" is a registered trademark of Koganei Corporation.


Low dust emissions

Capable of JIS/ISO Class 5 equivalent cleanliness (FED–STD Class 100 equivalent) calculated within a 0.1 µm particle. (Koganei standard)^{Note 1}

A particle pocket structure is used to

prevent the scattering of dust.

Note 1: Refer to page 59 for the Koganei standard. 2: Packaged in single layer packaging.

Softened shocks

These shock absorbers achieve their smooth shock absorption characteristics thanks to the linear orifice structure.

Reduces vibrations and shocks to bases and equipment.

Silicone-free

Silicone is not used in the hydraulic oil or plastic.

Wide range of variations M4 to M25 9 sizes and 40 models

> Wide range of variations 10=32 UNF to 1-12 UNF 9 sizes and 36 models

Linear orifices' long service life and softened shocks

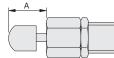
These shock absorbers achieve their smooth shock absorption characteristics and a long service life thanks to the linear orifice structure that transforms the orifice linearly.

Since the linear orifice structure can increase the inner diameter of the shock absorbers without needing an inner tube, the shock absorbers demonstrate similar characteristics to shock absorbers one thread size larger, as well as reduce the vibrations and shocks to bases and <u>Single orifice type shock absorber</u>

CAUTION Read the safety precautions on page (5) before using this product.

General precautions

Cover the unit when mounting it in locations where it might be subject to excessive dust, dripping water, dripping oil, etc. Dents, scratches, water, oil, or dust on the piston rod results in damage and decreases service life.



Mounting

- Keep the angle of eccentricity, resulting from the load direction and the axis of the shock absorber, under the specified values on pages (2). If an eccentric load exceeding the specifications is applied, it could result in breakage or impaired returns. If there is concern that an eccentric load exceeding the specified values will be applied, install a guide, or similar mechanism.
- **2.** Two or more shock absorbers can be mounted in parallel, to boost absorption capacity. In such an arrangement, however, be careful to ensure that the load is evenly distributed to each shock absorber.
- **3.** To adjust the capacity with the stroke, adjust the stopper nut (-S) or add an external stopper.
- **4.** If using with a cap, always mount a stopper nut (-S) or an external stopper to ensure that the cap is not subjected to loads at the stroke end. The stopper nut mounting position must not exceed the distance shown in the table below.

You can use it without a stopper nut or external stopper, but over the long-term, the stop location changes due to cap deformation and wear.

Model		٩
Model	mm	in
CS-KSHC3×3C(-F11)	3	0.118
CS-KSHC4×4C(-F11)	4	0.157
CS-KSHC5×5C(-11)(-F11)	5	0.197
CS-KSHC6×8C(-F11)	8	0.315
CS-KSHC7×8C-F11	-	0.315
CS-KSHC8×8C(-F11)	8	0.315
CS-KSHC9×10C(-F11)	10	0.394
CS-KSHC11×15C(-F11)	15	0.591
CS-KSHC14×16C	16	0.630
CS-KSHC18×25C(-F11)	25	0.984

5. The small screw on the back end of the shock absorber should never be loosened or removed. Oil may leak out of the shock absorber leading to a loss of functionality and resulting in damage to the equipment and accidents.

6. When mounting the shock absorber, always use the following maximum tightening torque guidelines. Tightening using excessive force may result in damage.

Model	Maximum tightening torque		
	N∙m	in ∙ lbf	
CS-KSHC3×3(C)(-F11)	0.5	4.426	
CS-KSHC4×4(C)(-F11)	0.85	7.523	
CS-KSHC5×5(C)(-11)(-F11)	2.5	22.128	
CS-KSHC6×8(C)(-F11)	6.5	57.532	
CS-KSHC7×8C-F11	_	57.5	
CS-KSHC8×8(C)(-F11)	12.0	106.2	
CS-KSHC9×10(C)(-F11)	12.0	106.2	
CS-KSHC11×15(C)(-F11)	20.0	177.0	
CS-KSHC14×16(C)	30.0	265.5	
CS-KSHC18×25(C)(-F11)	42.0	371.7	

- **7.** Ensure that the hardness of the surface directly impacting the piston rod of the shock absorber is over HRc40 hardness (excluding models with cap).
- **8.** Be aware that performance and characteristics change depending on the operating temperature.

KSHJ

KSHW

How to select shock absorbers

1. Confirm the thrust

Confirm the thrust that is used, and then check the prospective shock absorbers from the table of recommended cylinder bore sizes on page @. If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than is guaranteed.

2. Confirm the kinetic energy

Confirm I and II below, and then check page 0 for the selection graph for prospective shock absorbers from [1. Confirm the thrust]. (*)

I Impact object mass: m [kg]

Ⅱ Impact speed: v [m/s]

Because "v" is the impact speed, not the average speed, when using a cylinder,

v = m [cylinder stroke] \div s [operating time] $\times 2$

Select a model in which ${\rm I}$ and ${\rm I\hspace{-0.5mm}I}$ fit within the range enclosed by the capacity curves.

If multiple models are applicable, use the model that is closest to both the capacity curves and the operating conditions. The further the model you select is from the capacity curves and the operating conditions, the slower it will tend to be.

3. Confirm other specifications

Confirm that such specifications as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range are within the range for the shock absorber that you selected.

* The value for the kinetic energy, E, can be found by doing the following calculation. However, the shock absorber's capacity for absorption changes depending on the impact speed. When the shock absorber is doing low-speed operations, it has less drag than when it is doing high-speed operations.

The maximum absorption capacity that is noted in the specifications is reached only at the maximum impact speed.

Therefore, do not choose a shock absorber by comparing E to the maximum absorption capacity; confirm the capacity using the selection graph.

 $E=\frac{1}{2}mv^2$

- E : Kinetic energy (J)
- m: Impact object mass [kg]
- v : Impact speed (m/s)

Range in the selection graph

Vertical axis range :						
Maximum impact speed $\geq \frac{v}{o}$	Maximum impact speed \geq v Impact speed (operating condition)					
Horizontal axis range : Shock absorber's maximum absorption capacity at the impact speed (v = m/s)	≥	E Kinetic energy (operating condition)				

Calculating the thrust energy is not necessary because the size of the shock absorber is limited by the thrust in step 1.

- [Operating conditions]
- (1)Bore size of the cylinder being used: ϕ 16
- 2 Cylinder stroke: 100 mm = 0.1 m
- ③Pressure applied to the cylinder: 0.6 MPa
- (a) Cylinder's operating time: 0.4 s
- ⑤Impact object mass: 10 kg

1. Confirm the thrust

Either calculate or find the thrust in the cylinder thrust table on page 2 .

The cylinder thrust based on 1 and 3 is about 121 N.

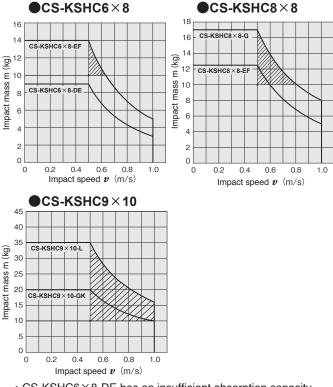
-					
Cylinder thrust	100.5N		120.6N		126N
Cylinder bore size	φ 16	< φ 16 0.6MPa	φ 16	<	φ 20
Applied pressure	0.5MPa		0.6MPa		0.4MPa

As mentioned above, although the cylinder being used is ϕ 16, the pressure applied to the cylinder exceeds 0.5 MPa, so consider the ϕ 20 cylinder (lower than 0.4 MPa) and check the table of recommended cylinder bore sizes on page ⁽²⁾.

The following are prospective models.

· CS-KSHC6×8
 · CS-KSHC8×8
 · CS-KSHC8×8

 \cdot CS-KSHC9×10 \cdot CS-KSHC11×15


2. Confirm the kinetic energy

- I The impact object mass m = 10 kg from 5
- ${\rm I\!I}$ Find the impact speed, v, from (2) and (4).

v = ② 0.1 m ÷ ④ 0.4 s ×2

=0.5 m/s

According to the selection graph on page 0, the shock absorber with the optimum absorption capacity for operating conditions is CS-KSHC8×8-EF.

- · CS-KSHC6×8-DE has an insufficient absorption capacity.
- The absorption capacities for all of the other shock absorbers are higher than that of CS-KSHC8×8-EF, so they do not fall within the operating conditions and capacity curves.

3. Confirm other specifications

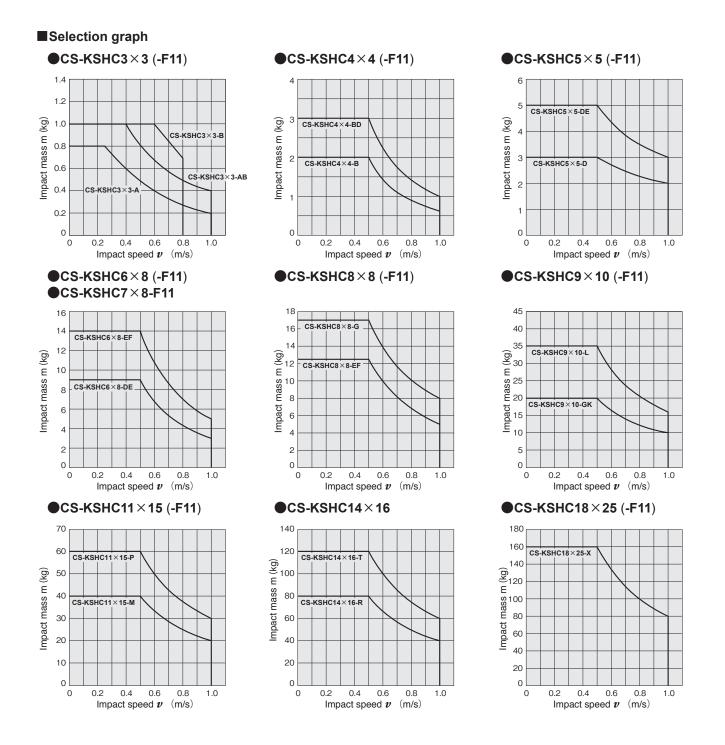
Verify that other operating conditions, such as the maximum operating frequency, maximum absorption capacity per unit of time, angle of eccentricity, and operating temperature range, are within the specified ranges for CS-KSHC8×8-EF.

Recommended cylinder bore size

Cylinder bore	+ 4	+ 0	4.0	+ 10	4 10	4.10	+ 00	4.05	4 00	+ 10	4 50	1.60	+ 00	+ 100
Model	φ4	φ6	φ8	φ 10	φ 12	φ 16	φ 20	φ 25	φ 32	φ 40	φ 50	φ 63	φ80	φ 100
CS-KSHC3×3(-F11)	\diamond	O	O	0										
CS-KSHC4×4(-F11)		\diamond	O	0										
CS-KSHC5×5(-F11)			\diamond	0	0	0								
CS-KSHC6×8(-F11)				\diamond	0	0	0							
CS-KSHC7×8-F11					0	0	0							
CS-KSHC8×8(-F11)						\diamond	O	0						
CS-KSHC9×10(-F11)						\diamond	O	0	0					
CS-KSHC11×15(-F11)							\diamond	O	0	0				
CS-KSHC14×16									\diamond	0	0	0		
CS-KSHC18×25(-F11)										\diamond	O	0	0	0

 \bigcirc : 0.3 MPa or higher $\quad \bigcirc$: 0.5 MPa or lower $\quad \bigcirc$: 0.4 MPa or lower

Note1: If a shock absorber that is smaller than the recommended shock absorber is used, the shock absorber being used may be damaged in fewer operation cycles than the value that is guaranteed.


Note2: CS-KSHC7×8 has only inch specifications.

Cylinder thrust

Bore size	Pressure area				Air pı	essure MPa	[psi.]			N [lbf
mm [in.]	mm ² [in. ²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]
φ4	12.6 [0.020]	1.3 [0.292]	2.5 [0.562]	3.8 [0.854]	5 [1.124]	6.3 [1.416]	7.5 [1.686]	8.8 [1.978]	10.1 [2.270]	11.3 [2.540]
φ6	28.3 [0.044]	2.8 [0.629]	5.7 [1.281]	8.5 [1.911]	11.3 [2.540]	14.1 [3.170]	17.0 [3.822]	19.8 [4.451]	22.6 [5.080]	25.4 [5.710]
φ8	50.3 [0.078]	5 [1.124]	10.1 [2.270]	15.1 [3.394]	20.1 [4.518]	25.1 [5.642]	30.2 [6.789]	35.2 [7.913]	40.2 [9.037]	45.2 [10.161]
φ10	78.5 [0.122]	7.9 [1.776]	15.7 [3.529]	23.6 [5.305]	31.4 [7.059]	39.3 [8.835]	47.1 [10.588]	55 [12.364]	62.8 [14.117]	70.7 [15.893]
φ12	113 [0.175]	11.3 [2.540]	22.6 [5.080]	33.9 [7.621]	45.2 [10.161]	56.5 [12.701]	67.9 [15.264]	79.2 [17.804]	90.5 [20.344]	101.8 [22.885]
φ16	201 [0.312]	20.1 [4.518]	40.2 [9.037]	60.3 [13.555]	80.4 [18.074]	100.5 [22.592]	121 [27.201]	141 [31.697]	161 [36.193]	181 [40.689]
φ20	314 [0.487]	31.4 [7.059]	62.8 [14.117]	94.2 [21.176]	126 [28.325]	157 [35.294]	188 [42.262]	220 [49.456]	251 [56.425]	283 [63.618]
φ25	491 [0.761]	49.1 [11.038]	98.2 [22.075]	147 [33.046]	196 [44.061]	245 [55.076]	295 [66.316]	344 [77.331]	393 [88.346]	442 [99.362]
φ32	804 [1.246]	80.4 [18.074]	161 [36.193]	241 [54.177]	322 [72.386]	402 [90.370]	483 [108.6]	563 [126.6]	643 [144.5]	724 [162.8]
φ40	1257 [1.948]	126 [28.325]	251 [56.425]	377 [84.750]	503 [113.1]	628 [141.2]	754 [169.5]	880 [197.8]	1005 [225.9]	1131 [254.2]
φ50	1963 [3.043]	196 [44.061]	393 [88.346]	589 [132.4]	785 [176.5]	982 [220.8]	1178 [264.8]	1374 [308.9]	1571 [353.2]	1767 [397.2]
φ63	3117 [4.831]	312 [70.138]	623 [140.1]	935 [210.2]	1247 [280.3]	1559 [350.5]	1870 [420.4]	2182 [490.5]	2494 [560.7]	2806 [630.8]
φ80	5027 [7.792]	503 [113.1]	1005 [225.9]	1508 [339.0]	2011 [452.1]	2513 [564.9]	3016 [678.0]	3519 [791.1]	4021 [903.9]	4524 [1017]
φ100	7854 [1.217]	785 [176.5]	1571 [353.2]	2356 [529.6]	3142 [706.3]	3927 [882.8]	4712 [1059]	5498 [1236]	6283 [1412]	7069 [1589]

Cautions for using the selection graphs

- 1. The selection graphs are calculated with a cylinder operating air pressure of 0.5 MPa.
- 2. The values in the selection graphs are for room temperature (20 to 25°). Be aware that performance and characteristics change depending on the operating temperature.
- 3. Select a shock absorber that is as close to, yet within, the capacity line(s).

Clean room specifications Shock absorber Linear orifice type

KSHC Series

Specifications

Model (in inches)	CS-KSHC3×3-A (CS-KSHC3×3-A-F11)	CS-KSHC3×3-AB (CS-KSHC3×3-AB-F11)	CS-KSHC3×3-B (CS-KSHC3×3-B-F11)
Maximum absorption capacity J(in.lbs)	0.1 (0.885)	0.2 (1.770)	0.3 (2.655)
Absorption stroke mm(in.)		3 (0.118)	
Impact speed range m/s(ft/s)	0.1 to 1.0 (0).33 to 3.28)	0.1 to 0.8 (0.33 to 2.62)
Maximum operating cycle cycle/min		60	
Maximum absorption capacity per unit of time J/min (in.lbs/min)		10 (88.6)	
Spring return force ^{Note 1} N		2.0	
Deflection angle		1° or less	
Operating temperature range ^{Note 2} °C(°F)		0 to 60 (32 to 140)	

Model (in inches	CS-KSHC4×4-B (CS-KSHC4×4-B-F11)	CS-KSHC4×4-BD (CS-KSHC4×4-BD-F11)	CS-KSHC5×5-D-11 (CS-KSHC5×5-F11-D)	CS-KSHC5×5-DE-11 (CS-KSHC5×5-F11-DE)
Maximum absorption capacity J(in.lbs	0.3 (2.655)	0.5 (4.425)	1.0 (8.851)	1.5 (13.276)
Absorption stroke mm(in.	4 (0	.157)	5 (0.	197)
Impact speed range m/s(ft/s		0.1 to 1.0 (0	0.33 to 3.28)	
Maximum operating cycle cycle/min	1	6	60	
Maximum absorption capacity per unit of time J/min (in.lbs/min	15/1	32.8)	45 (3	98.5)
Spring return force ^{Note 1}	3	.0	6	.0
Deflection angle		1° or	rless	
Operating temperature range ^{Note 2} °C(°F		0 to 60 (3	32 to 140)	

Item	Model (in inches)	CS-KSHC6×8-DE (CS-KSHC6×8-DE-F11) (CS-KSHC7×8-F11)	CS-KSHC6×8-EF (CS-KSHC6×8-EF-F11) (CS-KSHC7×8-F11)	CS-KSHC8×8-EF (CS-KSHC8×8-EF-F11)	CS-KSHC8×8-G (CS-KSHC8×8-G-F11)
Maximum absorption capacity	J(in.lbs)	1.5 (13.276)	2.5 (22.127)	2.5 (22.127)	4.0 (35.403)
Absorption stroke	mm(in.)	8 (0.	315)	8 (0.	315)
Impact speed range	m/s(ft/s)		0.1 to 1.0 (0	.33 to 3.28)	
Maximum operating cycle	cycle/min		6	0	
Maximum absorption capacity per unit	of time J/min (in.lbs/min)	75 (6	64.2)	120 (1	062.7)
Spring return force ^{Note 1}	N		8.	.5	
Deflection angle			1° or	less	
Operating temperature range ^{No}	^{ote 2} °C(°F)		0 to 60 (3	2 to 140)	

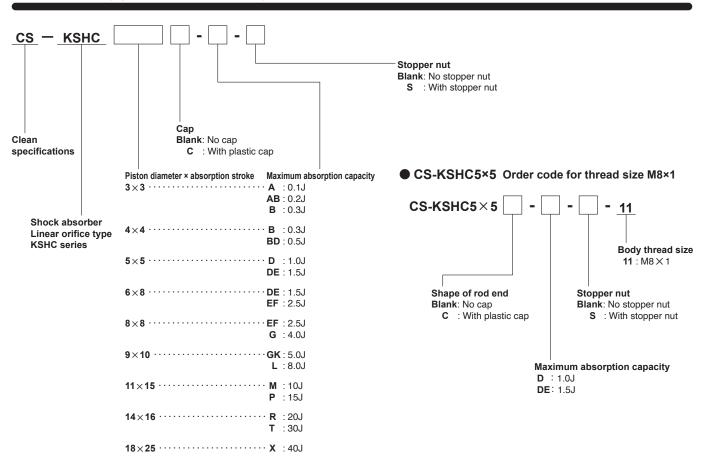
Item	(in inches)	CS-KSHC9×10-GK (CS-KSHC9×10-GK-F11)	CS-KSHC9×10-L (CS-KSHC9×10-L-F11)	CS-KSHC11×15-M (CS-KSHC11×15-M-F11)	CS-KSHC11×15-P (CS-KSHC11×15-P-F11)
Maximum absorption capacity	J(in.lbs)	5.0 (44.254)	8.0 (70.806)	10 (88.507)	15 (132.8)
Absorption stroke	mm(in.)	10 (0	.394)	15 (0	.591)
Impact speed range	m/s(ft/s)		0.1 to 1.0 (0	0.33 to 3.28)	
Maximum operating cycle	cycle/min	6	0	4	0
Maximum absorption capacity per unit	of time J/min (in.lbs/min)	240 (2	125.4)	300 (2	656.8)
Spring return forceNote 1	N	8	.5	1	8
Deflection angle			1° oi	r less	
Operating temperature range ^N	^{ote 2} °C(°F)		0 to 60 (3	32 to 140)	

Note1: The spring return force is the force of the piston rod when it returns from a full stroke. It is not stable, so cannot be used as other than rod return.

2: The shock absorbing capacity fluctuates based on speed and ambient temperature. Always use a product that is within the range shown by the solid lines in the graphs on pages (3).

* CS-KSHC7 has only inch specifications.

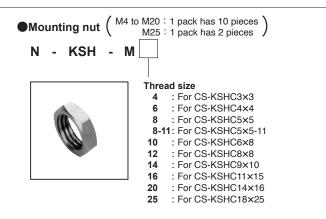
* The maximum tightening torque of CS-KSHC7 is different from that of CS-KSHC6. See page (3) for details on the maximum tightening torque.


KSHJ

Specifications

Item	(in inches)	CS-KSHC14×16-R	CS-KSHC14×16-T	CS-KSHC18×25-X (CS-KSHC18×25-F11-X)
Maximum absorption capacity	J(in.lbs)	20	30	40 (354.0)
Absorption stroke	mm(in.)	1	6	25 (0.984)
Impact speed range	m/s(ft/s)		0.1 to 1.0 (0	0.33 to 3.28)
Maximum operating cycle	cycle/min		4	0
Maximum absorption capacity per unit of	of time J/min (in.lbs/min)	60	00	800 (7084.8)
Spring return force ^{Note 1}	N	18	3.6	32
Deflection angle			1° or	less
Operating temperature range ^{Not}	^{æ 2} °C(°F)		0 to 60 (3	32 to 140)

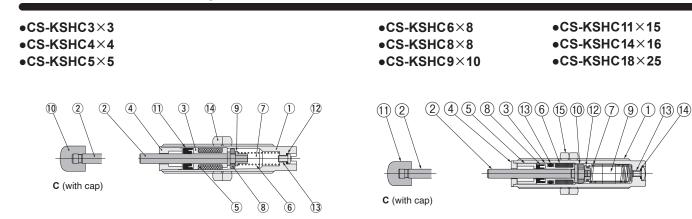

*CS-KSHC14 does not have inch specifications.


Order Codes (specifications in mm)

Additional Parts (no specifications in inches)

Stopper nut

* For the dimension diagrams of the additional parts, see page (8) to (8). * The stopper nut is made from mild steel (nickel plated).


Mass (specifications in mm)

Model	Main unit ^{Note}	Additional mass	Additional	parts' mass
IVIOUEI	Ivialiti utili	With plastic cap	Mounting nut (1 ea.)	Stopper nut
CS-KSHC3×3	1.8	0.1	0.2	0.8
CS-KSHC4×4	4.8	0.1	0.4	2
CS-KSHC5×5-01,-11	9.2	0.3	0.6(0.9)	4
CS-KSHC6×8	21	1	1.2	7
CS-KSHC8×8	32	1	1.9	8
CS-KSHC9×10	58	2	4	15
CS-KSHC11×15	94	2	6.6	29
CS-KSHC14×16	172	3	12.2	50
CS-KSHC18×25	350	7	23	100

Calculation example: The mass of CS-KSHC6 \times 8 (with cap and stopper) is 21 + 1 + 7 = 29g

Note: The weight of the main unit includes the weight of 2 mounting nuts.

Inner Construction and Major Parts and Materials

No.

1

2

(3)

4

(5)

6

 $\overline{0}$

8

(9)

10

(11)

(12)

(13)

(14)

(15)

Name

Body

Piston rod^{Note 1}

Sleeve

Plug

Spacer Accumulator

Spring

Rod seal

Oil

Piston ring

Сар

Collar^{Note 2}

O-ring

Screw

Mounting nut

Note: Depending on size, some part shapes and configurations may differ.

Materials

Copper alloy (nickel plated)

Steel (nickel plated)

Copper alloy

Stainless steel

Stainless steel

Synthetic rubber

Spring steel

Synthetic rubber

Special oil

Copper alloy

Plastic (POM)

Sintered metal

Synthetic rubber

Mild steel (zinc plated)

Mild steel (nickel plated)

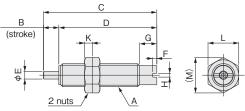
•CS-KSHC6×8, 8×8, 9×10, 11×15, 14×16, 18×25

•CS-KSHC3 \times 3, 4 \times 4, 5 \times 5

No.	Name	Materials
1	Body ^{Note 1}	Copper alloy (nickel plated)
2	Piston rod ^{Note 2}	Steel (nickel plated)
3	Sleeve	Copper alloy
4	Plug	Stainless steel
5	Accumulator	Synthetic rubber
6	Spring	Spring steel
7	Oil	Special oil
8	Piston ring	Copper alloy
9	Collar ^{Note 3}	Copper alloy
(10)	Сар	Plastic (POM)
(1)	Rod seal	Synthetic rubber
(12)	O-ring	Synthetic rubber
(13)	Screw	Mild steel (nickel plated)
(14)	Mounting nut ^{Note 4}	Mild steel (nickel plated)

Note1: CS-KSHC3, 4 are stainless steel

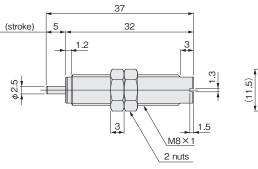
2: CS-KSHC5 is stainless steel

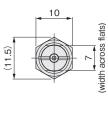

3: CS-KSHC3 is stainless steel

4: CS-KSHC3 is stainless steel

Note1: CS-KSHC6, 8 are stainless steel 2: CS-KSHC11, 14, 18 are stainless steel **KSHW**

KSHY

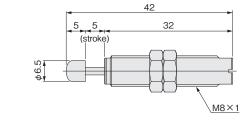

● No rod end cap: CS-KSHC3×3, CS-KSHC4×4

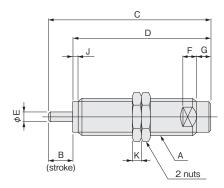


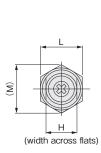
									(: (:	stroke)	(
Model Symbol	А	В	С	D	Е	F	G	Н	K	L	М	N	Q	R
CS-KSHC3×3	M4×0.5	3	25	22	1.2	1.1	3	1	2	5.5	6.4	28.5	3.5	3.2
CS-KSHC4×4	M6×0.75	4	33.5	29.5	2	1	5.5	1	2	8	9.2	37.5	4	4.6

●No rod end cap: CS-KSHC5×5-11

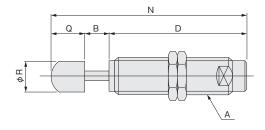
φ2.5




● With rod end cap: CS-KSHC5×5C-11

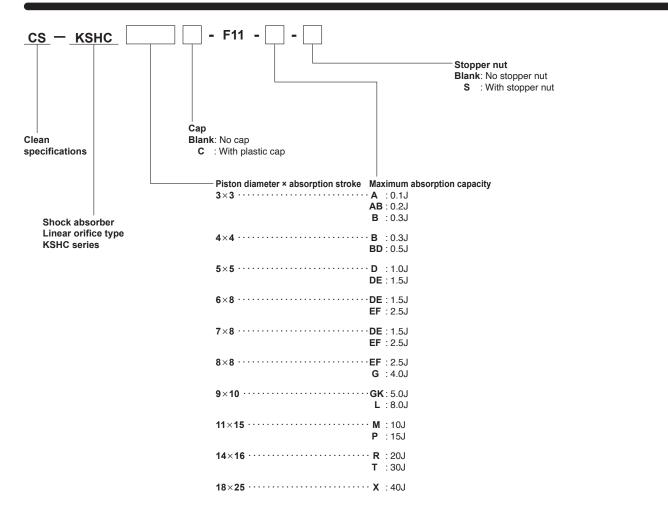

φH

Q



 \blacksquare No rod end cap: CS-KSHC $\square \times \square$

 \blacksquare With rod end cap: CS-KSHC $\square \times \square C$



Model Symbol	A	В	С	D	E	F	G	н	J	к	L	М	Ν	Q	R
CS-KSHC5×5	M8×0.75	5	36	31	2.5	3	5	7	1.2	2	10	11.5	41	5	6.5
CS-KSHC6×8	M10×1	8	53	45	3	4	5	9	2	3	12	13.9	61	8	8
CS-KSHC8×8	M12×1	8	53	45	3	5	5.5	11	2	4	14	16.2	63	10	10
CS-KSHC9×10	M14×1.5	10	70	60	4	5	5.5	12	2	5	17	19.6	80	10	11
CS-KSHC11×15	M16×1.5	15	87	72	4	5	6	14	3	7	19	21.9	97	10	11
CS-KSHC14×16	M20×1.5	16	98	82	5	6	6	18	3	8	24	27.7	113	15	15
CS-KSHC18×25	M25×1.5	25	135	110	6	7	6	23	3	10	30	34.6	153	18	18

\blacksquare With rod end cap: CS-KSHC3 \times 3C, CS-KSHC4 \times 4C

Ν D

Order Codes (specifications in inches)

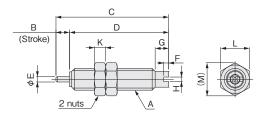
Mass (specifications in inches)

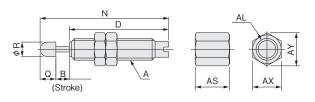
Model	Main unit ^{Note1}	Additional mass	Additional	parts' mass
Model	iviain unit	With plastic cap	Mounting nut (1 ea.)	Stopper nut
CS-KSHC3×3-F11	0.1	0.004	0.01	0.04
CS-KSHC4×4-F11	0.2	0.004	0.04	0.1
CS-KSHC5×5-F11-D,DE	0.4	0.01	0.06	0.2
CS-KSHC6×8-F11	0.7	0.04	0.07	0.4
CS-KSHC7×8-F11	1.0	0.04	0.09	0.4
CS-KSHC8×8-F11	1.3	0.04	0.1	0.5
CS-KSHC9×10-F11	2.2	0.07	0.2	0.7
CS-KSHC11×15-F11	5.1	0.07	0.4	2.5
CS-KSHC18×25-F11	12.7	0.2	1.1	4.8

Calculation example: The mass of CS-KSHC6x8 (with cap and stopper) is 0.7 + 0.04 + 0.4 = 1.14oz

Note1: The weight of the main unit includes the weight of 2 mounting nuts. Note2: CS-KSHC7 $\times 8$ has only inch specifications.

KSHW

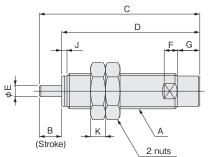

KSHY

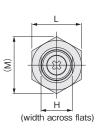

KSHP

Dimensions (in)

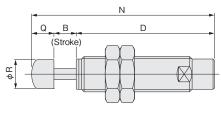
● No rod end cap: CS-KSHC3×3,CS-KSHC4×4

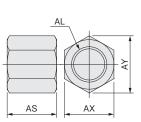
● With rod end cap: CS-KSHC3×3C,CS-KSHC4×4C





Model Symbol	A	В	С	D	E	F	G	Н	к	L	м	N	Q
CS-KSHC3×3(C)-F11	#10-32 UNF	0.118	0.984	0.866	0.047	0.043	0.118	0.039	0.1	1/4	0.289	1.122	0.138
CS-KSHC4×4(C)-F11	1/4-32 UNEF	0.157	1.319	1.161	0.079	0.039	0.217	0.039	0.1	3/8	0.433	1.476	0.157
Model Symbol	P	AL	AS	AX	AY								


Model Symbol	R	AL	AS	AX	AY
CS-KSHC3×3(C)-F11	0.126	#10-32 UNF	0.3	1/4	0.289
CS-KSHC4×4(C)-F11	0.181	1/4-32 UNEF	0.4	3/8	0.433


lacksquare No rod end cap: CS-KSHC $\square \times \square$

\blacksquare With rod end cap: CS-KSHC $\square \times \square C$

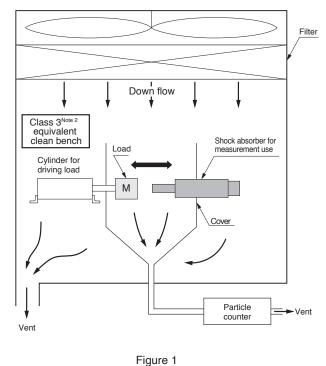
Model Symbol	A	В	С	D	E	F	G	н	J	к	L	М	N	Q
CS-KSHC5×5 (C)(-11)-F11	5/16-32 UNEF	0.197	1.417	1.22	0.098	0.118	0.197	0.276	0.047	0.13	7/16	0.505	1.614	0.197
CS-KSHC6×8 (C)-F11	3/8-32 UNEF	0.315	2.087	1.772	0.118	0.157	0.197	0.354	0.079	0.13	1/2	0.577	2.401	0.315
CS-KSHC7×8 (C)-F11	7/16-28 UNEF	0.315	2.087	1.772	0.118	0.157	0.197	3/8	0.079	0.15	9/16	0.65	2.401	0.315
CS-KSHC8×8 (C)-F11	1/2-20 UNF	0.315	2.087	1.772	0.118	0.197	0.217	7/16	0.079	0.15	5/8	0.722	2.48	0.394
CS-KSHC9×10 (C)-F11	9/16-18 UNF	0.394	2.756	2.362	0.157	0.197	0.217	1/2	0.079	7/32	11/16	0.794	3.15	0.394
CS-KSHC11×15 (C)-F11	3/4-16 UNF	0.591	3.425	2.835	0.157	0.276	0.236	5/8	0.118	1/4	15/16	1.082	3.819	0.394
CS-KSHC18×25 (C)-F11	1-12 UNF	0.984	5.315	4.331	0.236	0.276	0.236	0.875	0.118	3/8	1 1/4	1.443	6.024	0.709

Model Symbol	R	AL	AS	AX	AY
CS-KSHC5×5(C)(-11)-F11	0.256	5/16-32 UNEF	7/16	7/16	0.505
CS-KSHC6×8 (C)-F11	0.315	3/8-32 UNEF	11/16	1/2	0.577
CS-KSHC7×8 (C)-F11	0.315	7/16-28 UNEF	11/16	9/16	0.65
CS-KSHC8×8 (C)-F11	0.394	1/2-20 UNF	11/16	5/8	0.722
CS-KSHC9×10 (C)-F11	0.433	9/16-18 UNF	3/4	11/16	0.794
CS-KSHC11×15 (C)-F11	0.433	3/4-16 UNF	1 1/2	15/16	1.082
CS-KSHC18×25 (C)-F11	0.709	1-12 UNF	1 1/2	1 1/4	1.443

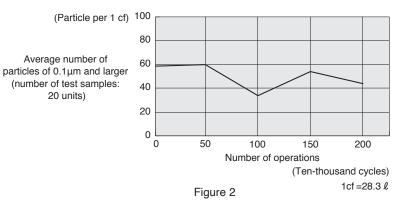
Currently, methods for evaluating the degree of cleanliness of shock absorbers are not defined by JIS or other standards. Because of this, Koganei devises its own independent measurement methods for cleanliness and does evaluations accordingly.

Measurement method

- We measure particles in the clean bench (Figure 1) without activating the shock absorber for measurements and the load driving cylinder in the clean bench (background measurement).^{Note}
- Note: Under the background measurement conditions, the number of particles measures zero.
- 2. We start driving a load to activate the shock absorber under the measurement conditions, and then measure the particles.


Measurement conditions

Load impact speed	: 300mm/s
Shock absorber operating freque	ncy: 30cycle/min ^{Note}
Particle measurement time	: 1 minute
Suction rate	: 1cf/min
Measured particles	: 0.1µm or greater

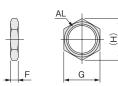

For reference, a graph of actual values is shown in Figure 2. The number of particles is the average value of the test samples. Also, the smaller the angle of eccentricity when mounting the shock absorber, the lower the number of particles is likely to be. We recommend mounting the shock absorber so that its angle of eccentricity to the workpiece is as small as possible.

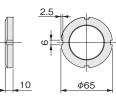
- Note1: The number of particles is based on 30 operation cycles. When using the shock absorbers, the customer's evaluation should be based on the customer's own operation frequency.
 - 2: FED-STD Class 1 equivalent.
 - 3: The numbers of particles in the graph are actual values measured under Koganei standards, and are not intended to be guaranteed values.

Outline of particle measuring device

Number of particles (measured value)^{Note 3}

KSHJ

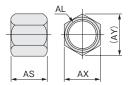

KSHW


KHSX

KSHF

●Mounting nut : N-KSH-M□-□ PN-KSH-M□-□

N-KSH-M45 (for KSHJ45)



Symbol	A 1	-	0			Ap	plicable shock absorb	ers	
Model	AL	F	G	н	KSHJ	KSHW	KSHY	KSHP	CS-KSHC
N-KSH-M4	M4×0.5	2	5.5	6.4	KSHJ4	—	_	—	CS-KSHC3
N-KSH-M6	M6×0.75	2	8	9.2	KSHJ6	-	KSHY6	KSHP6	CS-KSHC4
PN-KSH-M8	M8×0.75	2	10	11.5	KSHJ8(-01,02)	KSHW8(-01,02)	KSHY8(-01,02)	KSHP8	CS-KSHC5
N-KSH-M8	M8×0.75	2	10	11.5	KSHJ8(-01,02)	KSHW8(-01,02)	KSHY8(-01,02)	KSHP8	CS-KSHC5
PN-KSH-M8-11	M8×1	3	10	11.5	KSHJ8(-11,12)	KSHW8(-11,12)	KSHY8(-11,12)	KSHP8-11	CS-KSHC5-11
N-KSH-M8-11	M8×1	3	10	11.5	KSHJ8(-11,12)	KSHW8(-11,12)	KSHY8(-11,12)	KSHP8-11	CS-KSHC5-11
PN-KSH-M10	M10×1	3	12	13.9	KSHJ10	KSHW10	KSHY10	KSHP10	CS-KSHC6
N-KSH-M10	M10×1	3	12	13.9	KSHJ10	KSHW10	KSHY10	KSHP10	CS-KSHC6
PN-KSH-M12	M12×1	3	14	16.2	KSHJ12	KSHW12	KSHY12	KSHP12	CS-KSHC8
N-KSH-M12	M12×1	4	14	16.2	KSHJ12	KSHW12	KSHY12	KSHP12	CS-KSHC8
PN-KSH-M14	M14×1.5	5	17	19.6	KSHJ14	KSHW14	KSHY14	KSHP14	CS-KSHC9
N-KSH-M14	M14×1.5	5	17	19.6	KSHJ14	KSHW14	KSHY14	KSHP14	CS-KSHC9
PN-KSH-M16	M16×1.5	7	19	21.9	KSHJ16	KSHW16	KSHY16	KSHP16	CS-KSHC11
N-KSH-M16	M16×1.5	7	19	21.9	KSHJ16	KSHW16	KSHY16	KSHP16	CS-KSHC11
N-KSH-M18	M18×1.5	8	21	24.2	KSHJ18	—	—	KSHP18	-
PN-KSH-M20	M20×1.5	8	24	27.7	KSHJ20	KSHW20	KSHY20	KSHP20	CS-KSHC14
N-KSH-M20	M20×1.5	8	24	27.7	KSHJ20	KSHW20	KSHY20	KSHP20	CS-KSHC14
N-KSH-M22	M22×1.5	9	27	31.2	KSHJ22	_	_	_	-
N-KSH-M25	M25×1.5	10	30	34.6	KSHJ25-01	_	_	KSHP25	CS-KSHC18
N-KSH-M25-11	M25×2	10	30	34.6	KSHJ25(-11,12)	_	_	_	-
N-KSH-M27	M27×1.5	10	36	41.6	KSHJ27(-01,02)		_		-
N-KSH-M27-11	M27×3	12	36	41.6	KSHJ27(-11,12)	_	_	_	-
N-KSH-M30	M30×1.5	10	36	41.6	KSHJ30	_	_	KSHP30	_
N-KSH-M33	M33×1.5	10	41	47.3	KSHJ33	-	-	-	-
N-KSH-M36	M36×1.5	15	46	53.1	KSHJ36			KSHP36	
N-KSH-M42	M42×1.5	15	50	57.7	KSHJ42		-	KSHP42	-
N-KSH-M48	M48×2	15	55	63.5	KSHJ48	_		_	-

%N-KSH- Material : steel (nickel plated)

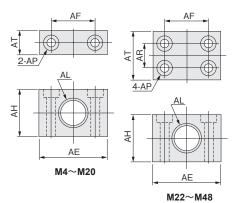
* PN-KSH- Material : Stainless steel

●Stopper nut:S-KSH-M□-□(-S) PS-KSH-M□-□

記号	A.I.	4.0	A Y	AV		Арр	plicable shock absorb	ers	
形式	AL	AS	AX	AY	KSHJ	KSHW	KSHY	KSHP	CS-KSHC
S-KSH-M4	M4×0.5	7.5	5.5	6.4	KSHJ4	—	—	-	CS-KSHC3
S-KSH-M6	M6×0.75	7	8	9.2	KSHJ6	-	-	KSHP6	CS-KSHC4
S-KSH-M6-L	M6×0.75	10	8	9.2	_	—	KSHY6	-	-
PS-KSH-M8	M8×0.75	11	10	11.5	KSHJ8(-01,02)	KSHW8(-01,02)	KSHY8(-01,02)	KSHP8	CS-KSHC5
S-KSH-M8	M8×0.75	11	10	11.5	KSHJ8(-01,02)	KSHW8(-01,02)	KSHY8(-01,02)	KSHP8	CS-KSHC5
PS-KSH-M8-11	M8×1	11	10	11.5	KSHJ8(-11,12)	KSHW8(-11,12)	KSHY8(-11,12)	KSHP8-11	CS-KSHC5-11
S-KSH-M8-11	M8×1	11	10	11.5	KSHJ8(-11,12)	KSHW8(-11,12)	KSHY8(-11,12)	KSHP8-11	CS-KSHC5-11
PS-KSH-M10	M10×1	17	12	13.9	KSHJ10	KSHW10	KSHY10	KSHP10	CS-KSHC6
S-KSH-M10	M10×1	17	12	13.9	KSHJ10	KSHW10	KSHY10	KSHP10	CS-KSHC6
PS-KSH-M12	M12×1	17	14	16.2	KSHJ12	KSHW12	KSHY12	KSHP12	CS-KSHC8
S-KSH-M12	M12×1	17	14	16.2	KSHJ12	KSHW12	KSHY12	KSHP12	CS-KSHC8
PS-KSH-M14	M14×1.5	18	17	19.6	KSHJ14	KSHW14	KSHY14	KSHP14	CS-KSHC9
S-KSH-M14 ^注	M14×1.5	18	17	19.6	KSHJ14	KSHW14	KSHY14	KSHP14	CS-KSHC9
S-KSH-M14-L	M14×1.5	25	17	19.6	KSHJ14×20(C)	-	-	-	-
PS-KSH-M16	M16×1.5	30	19	21.9	KSHJ16	KSHW16	KSHY16	KSHP16	CS-KSHC11
S-KSH-M16	M16×1.5	30	19	21.9	KSHJ16	KSHW16	KSHY16	KSHP16	CS-KSHC11
S-KSH-M18	M18×1.5	35	21	24.2	KSHJ18	—	—	KSHP18	-
PS-KSH-M20	M20×1.5	35	24	27.7	KSHJ20	KSHW20	KSHY20	KSHP20	CS-KSHC14
S-KSH-M20	M20×1.5	35	24	27.7	KSHJ20	KSHW20	KSHY20	KSHP20	CS-KSHC14
S-KSH-M22	M20×1.5	40	27	31.2	KSHJ22	—	—	—	-
S-KSH-M25	M25×1.5	40	30	34.6	KSHJ25-01	—	—	KSHP25	CS-KSHC18
S-KSH-M25-11	M25×2	40	30	34.6	KSHJ25(-11,12)	—	—	-	-
S-KSH-M27	M27×1.5	40	36	41.6	KSHJ27(-01,02)	—	—	—	-
S-KSH-M27-11	M27×3	40	36	41.6	KSHJ27(-11,12)	—	—	—	-
S-KSH-M30	M30×1.5	40	36	41.6	KSHJ30	—	—	KSHP30	-
S-KSH-M33	M33×1.5	40	41	47.3	KSHJ33	-	-	-	-
S-KSH-M36	M36×1.5	50	46	53.1	KSHJ36	—	-	KSHP36	-
S-KSH-M42	M42×1.5	50	50	57.7	KSHJ42	-	-	KSHP42	-
S-KSH-M45	M45×1.5	60	55	63.5	KSHJ45	—	—	_	-
S-KSH-M48	M48×2	60	55	63.5	KSHJ48	_	_	_	-

Note: S-KSH-M14 cannot be installed on KSHJ14X20(C).

S-KSH- Material : steel (nickel plated)


** PS-KSH- Material : Stainless steel

KSHY

KSHW

KSHC

●Side mounting bracket : 2-KSH-□-□ (-2)

Symbol	A.E.	A.E.				AP	AR	AT		Applicable sho	ock absorbers	
Model	AE	AF	AH	AL		AF		AI	KSHJ	KSHY	KSHP	CS-KSHC
2-KSH-M4	18	12	8	M4×0.5	φ3.4、φ6.5	Counter bore depth3.3		8	KSHJ4	—	_	CS-KSHC3
2-KSH-M6	18	12	10	M6×0.75	φ3.4、φ6.5	Counter bore depth3.3	—	8	KSHJ6	KSHY6	KSHP6	CS-KSHC4
2-KSH-M8	19	13	13	M8×0.75	φ3.4、φ6.5	Counter bore depth3.3	_	9	KSHJ8(-01,02)	KSHY8(-01,02)	KSHP8	CS-KSHC5
2-KSH-M8-11	19	13	13	M8×1	φ3.4、φ6.5	Counter bore depth3.3	—	9	KSHJ8(-11,12)	KSHY8(-11,12)	KSHP8-11	CS-KSHC5-11
2-KSH-M10	22	14	14	M10×1	φ3.4、φ6.5	Counter bore depth3.3	—	9	KSHJ10	KSHY10	KSHP10	CS-KSHC6
2-KSH-M12	25	16	18	M12×1	φ3.4、φ6.5	Counter bore depth3.3	_	9	KSHJ12	KSHY12	KSHP12	CS-KSHC8
2-KSH-M14	34	22	22	M14×1.5	φ4.5、φ8	Counter bore depth4.5	—	10	KSHJ14	KSHY14	KSHP14	CS-KSHC9
2-KSH-M16	38	25	25	M16×1.5	φ4.5、φ8	Counter bore depth4.5	—	12	KSHJ16	KSHY16	KSHP16	CS-KSHC11
2-KSH-M18	50	34	30	M18×1.5	φ6.5、φ11	Counter bore depth6.5	—	12	KSHJ18	—	KSHP18	_
2-KSH-M20	50	34	30	M20×1.5	φ9、φ14	Counter bore depth8.5	—	16	KSHJ20	KSHY20	KSHP20	CS-KSHC14
2-KSH-M22	60	44	35	M22×1.5	φ9、φ14	Counter bore depth8.5	19	35	KSHJ22	—	_	_
2-KSH-M25	60	44	35	M25×1.5	φ9、φ14	Counter bore depth8.5	19	35	KSHJ25-01	—	KSHP25	CS-KSHC18
2-KSH-M25-11	60	44	35	M25×2	φ9、φ14	Counter bore depth8.5	19	35	KSHJ25(-11,12)	—	_	_
2-KSH-M27	60	44	44	M27×1.5	φ9、φ14	Counter bore depth8.5	19	35	KSHJ27(-01,02)	—	_	_
2-KSH-M27-11	60	44	44	M27×3	φ9、φ14	Counter bore depth8.5	19	35	KSHJ27(-11,12)	—	_	_
2-KSH-M30	60	44	46	M30×1.5	φ9、φ14	Counter bore depth8.5	19	35	KSHJ30	—	KSHP30	_
2-KSH-M33	100	70	62	M33×1.5	φ18、φ26	Counter bore depth18	50	80	KSHJ33	_	_	_
2-KSH-M36	100	70	62	M36×1.5	φ18、φ26	Counter bore depth18	50	80	KSHJ36	—	KSHP36	_
2-KSH-M42	100	70	62	M42×1.5	φ18、φ26	Counter bore depth18	50	80	KSHJ42	—	KSHP42	_
2-KSH-M45	120	85	70	M45×1.5	φ22、φ32	Counter bore depth22	45	80	KSHJ45	—	-	-
2-KSH-M48	120	85	70	M48×2	φ22、φ32	Counter bore depth22	45	80	KSHJ48	—	-	

%Material : steel (nickel plated)

구
KSHJ
>
KSHW
KS
~
KSHY
×
₽
KSHP
HC
KSHC
arts
l pa
Additional parts
litio
Ado

Wend

KOGANEI 86

KOGANEI CORP. warrants its products to be free from defects in material and workmanship subject to the following provisions. Warranty Period The warranty period is 180 days from the date of delivery. KOGANEI CORP. shall in no way be liable or responsible for injuries or damage to persons or property arising out of the use or operation of the manufacturer's product. This warranty shall be void if the engineered safety devices are removed, made inoperative or not periodically checked for

proper functioning.

 Any operation beyond the rated capacity, any improper use or application, or any improper installation of the product, or any substitution upon it with parts not furnished or approved by KOGANEI CORP., shall void this warranty.

 This warranty covers only such items supplied by KOGANEI CORP. The products of other manufacturers are covered only by such warranties made by those original manufacturers, even though such items may have been included as the components.

The specifications are subject to change without notice.

URL http://www.koganei.co.jp

from the defects.

E-mail: overseas@koganei.co.jp

Koganei

Responsibility

Limitations

KOGANEI CORPORATION

If a defect in material or workmanship is found

during the warranty period, KOGANEI CORP.

will replace any part proved defective under normal use free of charge and will provide the

• This warranty is in lieu of all other warranties,

expressed or implied, and is limited to the

original cost of the product and shall not

include any transportation fee, the cost of

installation or any liability for direct, indirect or consequential damage or delay resulting

service necessary to replace such a part.

OVERSEAS DEPARTMENT 3-11-28, Midori-cho, Koganei City, Tokyo 184-8533, Japan Tel: (+81)42-383-7271 Fax: (+81)42-383-7276

KOGANEI INTERNATIONAL AMERICA.INC.

48860 Milmont Drive, suite 108C, Fremont, California 94538 Tel : 1-510-744-1626 Fax : 1-510-744-1676

SHANGHAI KOGANEI INTERNATIONAL TRADING CORPORATION

RM2601-2602, Tongda Venture Building No.1, Lane 600, Tianshan Road, Shanghai, China (200051) Tel: 86-21-6145-7313 Fax: 86-21-6145-7323

TAIWAN KOGANEI TRADING CO...LTD

Rm. 2, 16F., No88, Sec. 2, Zhongxiao E. Rd., Zhongzheng Dist., Taipei City 100, Taiwan(ROC) Tel: 886-2-2393-2717 Fax: 886-2-2393-2719

KOGANEI KOREA CO., LTD

A-3001, Heungdeok IT Valley Bldg., Heungkeok 1-ro, 13, Giheung-gu, Yongin-si, Gyeonggi-do, 446-908, KOREA Tel: 82-31-246-0414 Fax: 82-31-246-0415

KOGANEI (THAILAND) CO., LTD

555, Rasa Tower 1, 11th Fl.,Unit 1107 and 1108, Phaholyothin Road, Chatuchak, Chatuchak, Bangkok 10900 Tel: +66 (0) 2513-1228-31 Fax: +66 (0) 2513-1232

KOGANEI AUTOMATION (MALAYSIA) SDN, BHD.

Suite 29-2, Level 29, Menara 1MK, No.1, Jalan Kiara, Mont Kiara 50480, Kuala Lumpur, Malaysia Tel: 60-12-537-7086

KOGANEI ASIA PTE. LTD.

69 Ubi Road 1, #05-18 Oxley Bizhub Singapore 408731 Tel: 65-6293-4512 Fax: 65-6293-4513