Air-piloted Valves Features

PILOT

Pilot cap

Stem

Diaphragn

(Lower side with holes

Return spring

Body can

Diaphragm (Upper side)

- Since the unit requires air piping only, with no need for electrical wiring, it can be handled by a person without fear of electrical shocks or current
- Using no electricity means that expensive equipment to protect against explosions, special precautions, or measures against electric noise are not to be required.
- Unlike electrical equipment, the construction is simple. The associated limit valve is also durable and can be used for long periods.
- Because harmless compressed air is used, there is no need for major construction work on the main or pilot air line unlike that of hydraulic piping, and piping work is simple enough for anyone trained to perform.
- The power source is always compressed air, so that the system can be easily used where no power supply exists. In addition, it retains memory for about several dozen minutes, and can therefore continue operations even during power outages.

Koganei Air-piloted Valves Features Assured operation

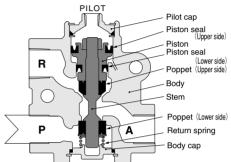
Sharp, switching characterized by poppet and diaphragm construction. The valve seat is also reliable. (Quick switching of main pressure helps to keep valve seat seal performance.)

Few breakdowns occur in this construction.

The construction is extremely simple. A poppet-type prevents galling or other problems, even if small foreign objects have entered inside. And no sticking occurs even if the unit is left unused for long periods of time. It can be used without lubrication.

With virtually no sliding parts, there is no need for

lubrication other than for a few specific models. This means no breakdown due to insufficient lubrication


Tolerates frequent operations for long operating life The small mass and stroke of the moving parts means a small inertial force which, along with construction with the large-capacity synthetic rubber for absorbing impacts, ensures continuous high-frequency operations and a long operating life.

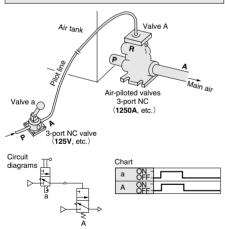
Any mounting direction acceptable

No matter what direction is used for mounting, the construction causes no trouble to the operation.

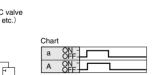
Compact and lightweight

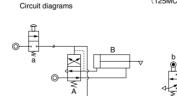
A unique, compact design, with a body of light aluminum alloy.

Piston poppet-type basic construction (501A type)


Application Examples of Air-piloted Valves

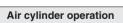
Using as a large-sized stop valve Air cylinder operation

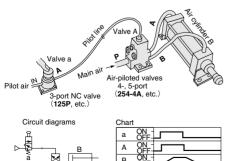

, 3-port NC valve


retracting cylinder (125P-2, etc.)

for re

Diaphragm type basic construction (125A type)

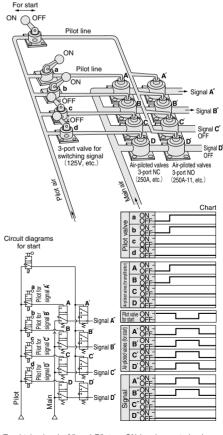




Air-piloted val

2-port NC valve for retracting cylinder (125MC, etc.)

Internal pilot holding type



Momentarily push pilot valve ${\bf a}$ to switch air-piloted valve ${\bf A}$, and then maintain that condition.

After switching **A**, let the air cylinder rod extend, and then push down limit valve **b**. Pushing **b** exhausts air from the **A** pilot line, switches off air-piloted valve **A**, and the air cylinder rod retracts.

Switching of air pressure signal

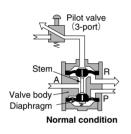
To obtain signals A" and B", turn ON hand operated valves a and b, and open the air-piloted valves A and B. Then, turning off the manual valve for start (which is normally left ON) turns off all of the air-piloted valves, (NO valves) A', B', C', and D', and opens them up, and signals A" and B" appear.

Charts for Selection of Air-piloted Valves

2-, 3-port valve (air flow rate of each model)

•		
Model of air- piloted valve		
3P+34A (TAC valve)	120 [4.2]	
31P+341A (TAC² valve)	370 [13.1]	
125A	370 [13.1]	
250A 2503A	1000 [35.3]	
500A	3700 [13	1]
375A 501A	4700 [1	166]
750A	9	300 [328]
1000A 1250A		18600 [657]

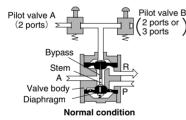
4-, 5-port valve (applicable cylinder bore size of each model)

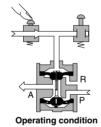

	Cylinder bore size mm [in.]		
Model of air- piloted valve	25,32 40 50 63 80 100 125 140 180 200 [0.787] 1.260 [1.575] [1.969] [2.480] [3.150] [3.937] (4.921) [5.512] [7.087] 7.874		
4P+34A (TAC valve)	This area presents high cylinder		
41P+341A (TAC² valve)	speed is not required.		
250-4A 2503-4A	Normal operating range Cylinder speed		
254-4A	(Cylinder speed (300~500mm/s [11.8~19.7in./sec.]) (max. 200~300mm/s [7.9~11.8in./sec.], min. 50mm/s [2.0in./sec.]		
375-4A 501-4A	This area presents high cylinder speed		
750-4A	is required.		
1000-4A 1250-4A	(Cylinder speed: min. 500~600mm/s [19.7~23.6in./sec.])		

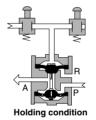
- Notes: 1 While the speeds shown in this graph assume an air supply pressure of 0.5MPa [73psi] and a load ratio of 0, the speeds will be virtually the same in the range of 0.4~0.7MPa [58~102psi.], and up to a load ratio of about 30 %
 - 2. In general, select a valve with a margin of about 50 % for the required cylinder speed, and then use a
 - speed controller to reduce the speed in operation.

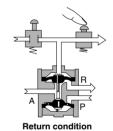
 3. In considering the time required for the cylinder to make one stroke, the "cylinder delay time" and "cushioning time" need to be considered alongside the "cylinder speed."

Differences between A Type and AA Type Air-piloted Valves


A type valves (Continuous pilot pressure is needed to maintain the operating condition.)






AA type Valves

The difference from the A type valve is the existence of a bypass hole (small hole) on the stem. This helps the pilot valve to maintain its operating condition during a momentary operation. It is able to maintain the operating condition even if a certain amount of air leaks from the pilot line.

Note: These shematic diagrams show the diaphragm type, 3-port valves. The bypass for the 4, 5-port valve is on the A side stem. See the Operating Principles for the 250-4 AA type on p.946.

Safety Precautions (Air-piloted valves)

- 1. All types other than the A2 (double pilot) type are designed to use air as the media. For other media, consult us.
- 2. Always check the Catalog, etc., when performing piping to products to ensure that the connections are correctly done Wrong piping could result in abnormal operation of the actuator, etc.

For locations subject to water or to large amounts of dust, use a cover, etc., to protect the valve. In addition, install a muffler, etc., to the R port to prevent entering of dust. Intrusion of water or dust could result in short-term functional breakdowns, or in sudden drops in performance or reduced operating life.

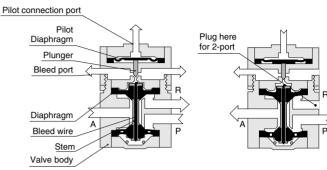
- 1. Use main air pressure higher than the minimum operating pressure listed in the Catalog.
- 2. Set the pilot pressure to a level suitable to the main pressure. An unnecessarily high pressure can shorten the operating
- 3. If excessively throttling the R port for operation, set the pilot pressure at the main pressure or higher (A type). For details, see the specifications of each series.
- 4. The AA type (internal pilot holding type) cannot be used as a 2-port valve. For a large air flow rate, provide sufficient air supply. In addition, the R port cannot be used in a choked condition. Install speed controllers between the valve and
- 5. As with the normal A type, use a pilot valve size that offers enough margin when the AA type is operated as a single pilot valve. In this case, set the main and pilot valves to the same pressure.

Low Pressure Air-piloted Valves (Interface Valves)

125LA

Symbols

2-port	3-port		
NC (normally closed)			
P H A	R P T		
125LA-2	125LA		


Specifications

Item Basic model		125LA	
	Main	Rc1/8	
Port size	Pilot	M5×0.8 or Barbed fitting (barbed fitting for nylon tube ∮6~4)	
Effective area (Cv)	mm ²	5.5 (0.27)	
Media		Air	
0 "	Main	0.2~0.9 {2.0~9.2} [29~131]	
Operating pressure range MPa {kgf/cm²} [psi.]	Pilot	0.001~0.003 {0.01~0.03} [0.15~0.44], Max.0.1 {1.0} [15]	
ivii a įkgi/ciii į įpsi.j		See the table "Minimum Pilot Pressure"	
Proof pressure	Main	1.35 {13.8} [196]	
MPa {kgf/cm²} [psi.]	Pilot	0.1 {1.0} [15]	
Bleed volume \(\ell \) /min [ft3/min.] (ANR)		Max. 1.5 [0.053] (0.5MPa [73psi.])	
Operating temp. range (atmosphere and media) °C [°F]		5~60 [41~140]	
Maximum operating frequency Hz		5	
Lubrication		Not required	
Mass kg [lb.]		0.1 [0.22]	

Operating Principles, Major Parts and Materials

Normal condition

Operating condition

Parts	Materials	
Body	Aluminum alloy (anodized)	
Stem	Brass	
Diaphragm	Synthetic rubber	

Dimensions (mm)

3-Rc1/8

58.5

9

32 45

4- φ 5.5

Mounting hole

φ32

φ 30

Flow Rate 125LA How to read the graph When the supply pressure is 0.5MPa [73psi.] and th flow rate is 275 ℓ /min [9.7ft³/min.] (ANR), the valve outlet pressure becomes 0.4MPa [58psi.].

Handling Precautions

Do not apply higher pressure than the specified pilot pressure.

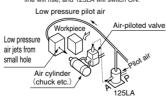
Use an oil-removing air filter, etc., to prevent impure compressor oil, etc., from entering. To prevent clogging, supply the main line air through the filter to prevent solid objects from mixing into the flow.

Supply a sufficient amount of air and pressure on the P port.

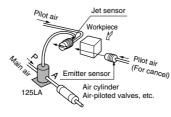
Order Codes

A type (normal type)

Number of ports

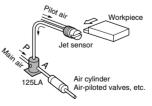

Code	Number of ports	
Blank	3 ports	
2	2 ports	

Minimum Pilot Pressure

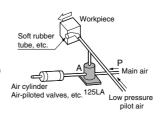

MPa [psi.]				
	Main pressure			
Model	0.2~0.35	0.35~0.56	0.56~0.9	
	[29~51]	[51~81]	[81~131]	
125LA	0.002	0.0022	0.0029	
	[0.29]	[0.32]	[0.42]	

Application Examples

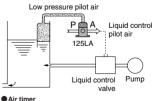
When a workpiece is blocking the small hole, the pressure in the low pressure pilot line will rise, and 125LA will switch ON.



When a workpiece passes through, the when a workpiece passes through, rus-sensor pilot on the left side activates, and 125LA will switch ON. If there is no work-piece, the sensor air jet on the right side blows off the left side's pilot air, and 125LA switches OFF.

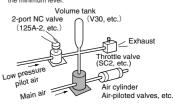

When a workpiece passes through the jet sensor and blocks the air jet, 125LA will switch OFF.

45



When a workpiece presses against and bends a rubber tube, the low-pressure pilot line's internal pressure will rise, and 125LA will switch ON.

Use of a coil spring (dense pitch coils, with the end capped) in place of the rubber tube will cause an opposite action to the rubber tube, and switch OFF.



When the liquid level rises, the low-pressure pilot line's internal pressure will rise, 125LA will switch ON, and the liquid control valve will activate.

momentarily return during limited operation time)

operation time)
Pressing the 2-port valve (pressing and releasing) switches the 125LA to ON, and switches it to OFF after a set period. Since the 125LA has a snapaction operation, the neutral position can be kept at the minimum level.

